A finite element-boundary element algorithm for inhomogeneous boundary value problems

被引:15
作者
Jung, M [1 ]
Steinbach, O
机构
[1] Tech Univ Dresden, Fak Math & Nat Wissensch, Inst Wissensch Rechnen, D-01062 Dresden, Germany
[2] Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
关键词
multilevel finite elements; boundary elements; coupling;
D O I
10.1007/s006070200000
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For the solution of inhomogeneous we propose a successively coupled finite-boundary element method. By using a finite element method in a simpler auxiliary domain first compute a particular solution of the inhomogeneous partial differential equation. This solution is used in a second step to approximate the Newton potential in the boundary integral formulation which is related to the original boundary value problem. A rigorous error analysis and a numerical example are given.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 13 条
[1]  
[Anonymous], E W J NUMER MATH
[2]  
BREBBIA CA, 1993, ADV FORMULATIONS BOU, P31
[3]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[4]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626
[5]  
Ganesh M, 2001, MATH COMPUT, V70, P1031, DOI 10.1090/S0025-5718-00-01266-7
[6]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI DOI 10.1007/978-3-662-02427-0
[7]  
HEBEKER FK, 1987, PROGR SCI COMPUTING, V7, P180
[8]   FINITE-ELEMENT METHOD FOR SOME INTEGRAL-EQUATIONS OF 1ST KIND [J].
HSIAO, GC ;
WENDLAND, WL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 58 (03) :449-481
[9]  
HSIAO GC, 1981, J INTEGRAL EQUAT, V3, P299
[10]   Adaptive boundary element methods based on computational schemes for Sobolev norms [J].
Steinbach, O .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :604-616