Alzheimer amyloid β-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus

被引:162
作者
Chen, QS
Wei, WZ
Shimahara, T
Xie, CW
机构
[1] Univ Calif Los Angeles, NPI, Dept Psychiat & Biobehav Sci, Los Angeles, CA 90024 USA
[2] CNRS, Neurobiol Cellulaire & Mol Lab, F-91198 Gif Sur Yvette, France
关键词
Alzheimer amyloid beta-peptide; late-phase LTP; hippocampus; dentate gyrus; NMDA channel currents; protein synthesis inhibitor;
D O I
10.1006/nlme.2001.4034
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The perforant path projecting from the entorhinal cortex to the hippocampal dentate gyrus is a particularly vulnerable target to the early deposition of amyloid beta (Abeta) peptides in Alzheimer's brain. The authors previously showed that brief applications of Abeta at subneurotoxic concentrations suppressed the early-phase long-term potentiation (E-LTP) in rat dentate gyros. The current study further examines the effect of Abeta on the late-phase LTP (L-LTP) in this area. Using multiple high-frequency stimulus trains, a stable L-LTP lasting for at least 3 h was induced in the medial perforant path of rat hippocampal slices. Bath application of Abeta(1-42) (0.2-1.0 muM) during the induction trains attenuated both the initial and late stages of L-LTP. On the other hand, Abeta(1-42) perfusion within the first hour following the induction primarily impaired the late stage of L-LTP, which resembled the action of the protein synthesis inhibitor emetine. Blockade of calcineurin activity with FK506 or cyclosporin A completely prevented Abeta-induced L-LTP deficits. These results suggest that Abeta(1-42) impaired both the induction and maintenance phase of dentate L-LTP through calcineurin-dependent mechanisms. In the concentration range effective for inhibiting L-LTP. Abeta(1-42) also reduced the amplitude of NMDA receptor-mediated synaptic currents in dentate granule cells via a postsynaptic mechanism. In addition. concurrent applications of Abeta(1-42) with the protein synthesis inhibitor caused no additive reduction of L-LTP, indicating a common mechanism underlying the action of both. Thus, inhibition of NMDA receptor channels and disruption of protein synthesis were two possible mechanisms contributing to Abeta-induced L-LTP impairment. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:354 / 371
页数:18
相关论文
共 71 条
[1]   Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory [J].
Abel, T ;
Nguyen, PV ;
Barad, M ;
Deuel, TAS ;
Kandel, ER .
CELL, 1997, 88 (05) :615-626
[2]   AN AGE COMPARISON OF THE RATES OF ACQUISITION AND FORGETTING OF SPATIAL INFORMATION IN RELATION TO LONG-TERM ENHANCEMENT OF HIPPOCAMPAL SYNAPSES [J].
BARNES, CA ;
MCNAUGHTON, BL .
BEHAVIORAL NEUROSCIENCE, 1985, 99 (06) :1040-1048
[3]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[4]   CREB phosphorylation and dephosphorylation: A Ca2(+)- and stimulus duration-dependent switch for hippocampal gene expression [J].
Bito, H ;
Deisseroth, K ;
Tsien, RW .
CELL, 1996, 87 (07) :1203-1214
[5]   Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region [J].
Blitzer, RD ;
Wong, T ;
Nouranifar, R ;
Iyengar, R ;
Landau, EM .
NEURON, 1995, 15 (06) :1403-1414
[6]   Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP [J].
Blitzer, RD ;
Conner, JH ;
Brown, GP ;
Wong, T ;
Shenolikar, S ;
Iyengar, R ;
Landau, EM .
SCIENCE, 1998, 280 (5371) :1940-1943
[7]   THE CA2+ INFLUX INDUCED BY BETA-AMYLOID PEPTIDE-25-35 IN CULTURED HIPPOCAMPAL-NEURONS RESULTS FROM NETWORK EXCITATION [J].
BRORSON, JR ;
BINDOKAS, VP ;
IWAMA, T ;
MARCUCCILLI, CJ ;
CHISHOLM, JC ;
MILLER, RJ .
JOURNAL OF NEUROBIOLOGY, 1995, 26 (03) :325-338
[8]   Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice [J].
Chapman, PF ;
White, GL ;
Jones, MW ;
Cooper-Blacketer, D ;
Marshall, VJ ;
Irizarry, M ;
Younkin, L ;
Good, MA ;
Bliss, TVP ;
Hyman, BT ;
Younkin, SG ;
Hsiao, KK .
NATURE NEUROSCIENCE, 1999, 2 (03) :271-276
[9]  
Chen QS, 2000, J NEUROSCI RES, V60, P65, DOI 10.1002/(SICI)1097-4547(20000401)60:1<65::AID-JNR7>3.0.CO
[10]  
2-Q