DEC1 is a downstream target of TGF-β with sequence-specific transcriptional repressor activities

被引:83
作者
Zawel, L
Yu, J
Torrance, CJ
Markowitz, S
Kinzler, KW
Vogelstein, B
Zhou, SB
机构
[1] Johns Hopkins Med Inst, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21231 USA
[2] Johns Hopkins Med Inst, Howard Hughes Med Inst, Baltimore, MD 21231 USA
[3] Case Western Reserve Univ, Ireland Canc Ctr, Dept Med, Cleveland, OH 44106 USA
[4] Howard Hughes Med Inst, Ctr Canc, Cleveland, OH 44106 USA
[5] Univ Hosp Cleveland, Res Inst, Cleveland, OH 44106 USA
关键词
D O I
10.1073/pnas.261714999
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To identify genes that mediate transforming growth factor-P (TGF-beta) signaling, a colorectal cancer cell line that was sensitive to the growth inhibitory effects of this cytokine was created. We then determined the global gene expression profiles of these cells, and those of HaCaT human keratinocytes, in the presence and absence of TGF-beta. Of the several genes identified in this screen, DEC1 was of particular note in light of the rapidity and consistency of its induction and its potential biochemical activities. We identified a consensus DNA-binding site for DEC1 and showed that DEC1 could repress the transcription of a reporter containing this binding site in its promoter. Finally, both alleles of the DEC1 locus in HaCaT cells were inactivated through targeted homologous recombination. This approach revealed that DEC1 induction was not required for the growth inhibition mediated by TGF-beta in this line. However, DEC1 may function in concert with other signaling components to mediate certain biologic effects of TGF-beta.
引用
收藏
页码:2848 / 2853
页数:6
相关论文
共 43 条
[1]   Mechanisms of disease:: Role of transforming growth factor β in human disease. [J].
Blobe, GC ;
Schiemann, WP ;
Lodish, HF .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 342 (18) :1350-1358
[2]   Overexpression of Stra13 a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells [J].
Boudjelal, M ;
Taneja, R ;
Matsubara, S ;
Bouillet, P ;
Dolle, P ;
Chambon, P .
GENES & DEVELOPMENT, 1997, 11 (16) :2052-2065
[3]   NORMAL KERATINIZATION IN A SPONTANEOUSLY IMMORTALIZED ANEUPLOID HUMAN KERATINOCYTE CELL-LINE [J].
BOUKAMP, P ;
PETRUSSEVSKA, RT ;
BREITKREUTZ, D ;
HORNUNG, J ;
MARKHAM, A ;
FUSENIG, NE .
JOURNAL OF CELL BIOLOGY, 1988, 106 (03) :761-771
[4]   Efficient TGF-β induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter [J].
Brodin, G ;
Åhgren, A ;
ten Dijke, P ;
Heldin, CH ;
Heuchel, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :29023-29030
[5]   Defective repression of c-myc in breast cancer cells:: A loss at the core of the transforming growth factor β growth arrest program [J].
Chen, CR ;
Kang, YB ;
Massagué, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :992-999
[6]   A transcriptional partner for MAD proteins in TGF-beta signalling [J].
Chen, X ;
Rubock, MJ ;
Whitman, M .
NATURE, 1996, 383 (6602) :691-696
[7]   TGF-β signaling in tumor suppression and cancer progression [J].
Derynck, R ;
Akhurst, RJ ;
Balmain, A .
NATURE GENETICS, 2001, 29 (02) :117-129
[8]   Smads:: Transcriptional activators of TGF-β responses [J].
Derynck, R ;
Zhang, Y ;
Feng, XH .
CELL, 1998, 95 (06) :737-740
[9]   Targeted mutations of transforming growth factor-β genes reveal important roles in mouse development and adult homeostasis [J].
Dünker, N ;
Krieglstein, K .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (24) :6982-6988
[10]   MADR2 maps to 18q21 and encodes a TGF beta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma [J].
Eppert, K ;
Scherer, SW ;
Ozcelik, H ;
Pirone, R ;
Hoodless, P ;
Kim, H ;
Tsui, LC ;
Bapat, B ;
Gallinger, S ;
Andrulis, IL ;
Thomsen, GH ;
Wrana, JL ;
Attisano, L .
CELL, 1996, 86 (04) :543-552