Design of combinational logic circuits through an evolutionary multiobjective optimization approach

被引:42
作者
Coello, CAC
Aguirre, AH
机构
[1] CINVESTAV, IPN, Dept Ingn Elect, Secc Computac, Mexico City 07300, DF, Mexico
[2] Tulane Univ, Dept Comp Sci & Elect Engn, New Orleans, LA 70118 USA
来源
AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING | 2002年 / 16卷 / 01期
关键词
circuit design; evolvable hardware; evolutionary multiobjective optimization; genetic algorithms; multiobjective optimization;
D O I
10.1017/S0890060401020054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a population-based evolutionary multiobjective optimization approach to design combinational circuits. Our results indicate that the proposed approach can significantly reduce the computational effort required by a genetic algorithm (GA) to design circuits at a gate level while generating equivalent or even better solutions (i.e., circuits with a lower number of gates) than a human designer or even other GAs. Several examples taken from the literature are used to evaluate the performance of the proposed approach.
引用
收藏
页码:39 / 53
页数:15
相关论文
共 47 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[2]  
[Anonymous], P WORKSH AISB S CREA
[3]  
[Anonymous], DESIGN OPTIMIZATION
[4]  
Brayton R.K., 1984, LOGIC MINIMIZATION A
[5]   MIS - A MULTIPLE-LEVEL LOGIC OPTIMIZATION SYSTEM [J].
BRAYTON, RK ;
RUDELL, R ;
SANGIOVANNIVINCENTELLI, A ;
WANG, AR .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1987, 6 (06) :1062-1081
[6]  
Brzozowski J. A., 1976, DIGITAL NETWORKS
[7]  
Camponogara E, 1997, PROCEEDINGS OF THE THIRD NORDIC WORKSHOP ON GENETIC ALGORITHMS AND THEIR APPLICATIONS (3NWGA), P49
[8]  
Chankong V., 1983, Multiobjective Decision Making: Theory and Methodology
[9]  
Coello C.A., 1997, P INT C ARTIFICIAL N
[10]  
Coello C. A. C., 1999, Knowledge and Information Systems, V1, P269