The Bcl-2 family proteins comprise pro-apoptotic as well as anti-apoptotic members. Heterodimerization between members of the Bcl-2 family proteins is a key event in the regulation of apoptosis. We report here that Bcl-2 protein was selectively cleaved by active caspase-3-like proteases in CTLL-2 cell apoptosis in response to interleukin-a deprivation. Structural and functional analyses of the cleaved fragment revealed that the NH2-terminal region of Bcl-2 (1-34 amid acids) was required for its anti-apoptotic activity and heterodimerization with pro-apoptotic Bax protein. Site directed mutagenesis of the NH2 terminal region showed that substitutions of hydrophobic residues of BH4 domain resulted in the loss of ability to form a heterodimer with Bax. Particularly instructive was that the V15E mutant of Bcl-2, which completely lost the ability to form a heterodimer with Bax, failed to inhibit Bax- and staurosporine-induced apoptosis. Our results suggest that the BH4 domain of Bcl-2 is critical for its heterodimerization with Bax and for exhibiting anti-apoptotic activity. Therefore, agents interferring with the critical residues of the BH4 domain may provide a new strategy in cancer therapy by impairing Bcl-2 function.