Symmetries of quasicrystals

被引:10
作者
Radin, C [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
quasicrystals; diffraction; symmetries; aperiodic tiling; hierarchical quaquaversal;
D O I
10.1023/A:1004516030941
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider tiling models of "round quasicrystals" which would have diffraction patterns which are fully rotation invariant-rings instead of Bragg peaks. They can be distinguished from glasses by self-similarity of the pattern of radii of the rings.
引用
收藏
页码:827 / 833
页数:7
相关论文
共 14 条
[1]  
[Anonymous], STUD MATH LIB
[2]  
[Anonymous], NOTICES AM MATH SOC
[3]   Quaquaversal tilings and rotations [J].
Conway, JH ;
Radin, C .
INVENTIONES MATHEMATICAE, 1998, 132 (01) :179-188
[4]  
DEBRUIJN NG, 1981, P K NED AKAD A MATH, V84, P39
[5]   SPECTRAL THEORY AND X-RAY-DIFFRACTION [J].
DWORKIN, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :2965-2967
[6]  
Gardner M., 1977, Scientific American, V236, P110, DOI DOI 10.1038/SCIENTIFICAMERICAN0177-110
[7]   Matching rules and substitution tilings [J].
Goodman-Strauss, C .
ANNALS OF MATHEMATICS, 1998, 147 (01) :181-223
[8]  
LE TQT, 1995, DIFFER GEOM APPL, V5, P13
[9]   QUASICRYSTALS - A NEW CLASS OF ORDERED STRUCTURES [J].
LEVINE, D ;
STEINHARDT, PJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (26) :2477-2480
[10]   CRYSTALLOGRAPHY AND THE PENROSE PATTERN [J].
MACKAY, AL .
PHYSICA A, 1982, 114 (1-3) :609-613