EMG amplitude distribution changes over the upper trapezius muscle are similar in sustained and ramp contractions

被引:54
作者
Holtermann, A. [1 ]
Roeleveld, K. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Human Movement Sci Programme, N-7491 Trondheim, Norway
关键词
activation pattern; fatigue; inhomogeneous activation; multi-channel surface electromyographical; trapezius;
D O I
10.1111/j.1748-1716.2005.01520.x
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Aim: To investigate whether global motor unit recruitment to compensate for muscle fatigue during sustained contraction and to regulate force increase during ramp contraction are controlled in similar manners in the upper trapezius muscle. Methods: Fourteen subjects performed a 10-s ramp contraction from 0% to 90% of maximal voluntary contraction (MVC) and a 3-min sustained contraction at 25% MVC. Both contractions involved isometric shoulder elevation with a multi-channel surface electromyographical grid placed on the skin above the muscle. To evaluate the global muscle activation pattern, the changes in spatial amplitude distribution of the sustained and the ramp contraction were examined and compared. Results: In both contraction types, the upper part of the trapezius muscle was spatially non-uniform (inhomogeneous) activated. Throughout the sustained contraction, the amplitude distribution of the upper trapezius muscle became more similar to the amplitude distribution at higher force levels. Conclusion: These findings support the hypothesis that global motor unit recruitment to compensate for muscle fatigue during a sustained contraction, and to regulate force increase during a ramp contraction is controlled in a similar manner. Consequently, they confirm fundamental principles of motor unit activation based on recordings of limited motor unit samples.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 40 条
[1]   Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions [J].
Adam, A ;
De Luca, CJ .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :2919-2927
[2]   CHANGES IN MUSCLE-FIBER CONDUCTION-VELOCITY, MEAN POWER FREQUENCY, AND MEAN EMG VOLTAGE DURING PROLONGED SUBMAXIMAL CONTRACTIONS [J].
ARENDTNIELSEN, L ;
MILLS, KR ;
FORSTER, A .
MUSCLE & NERVE, 1989, 12 (06) :493-497
[3]  
BIGLANDRITCHIE B, 1986, ACTA PHYSIOL SCAND, V128, P137
[4]   MULTIELECTRODE STUDY OF THE TERRITORY OF A MOTOR UNIT [J].
BUCHTHAL, F ;
GULD, C ;
ROSENFALCK, P .
ACTA PHYSIOLOGICA SCANDINAVICA, 1957, 39 (01) :83-104
[5]   PHYSIOLOGICAL TYPES AND HISTOCHEMICAL PROFILES IN MOTOR UNITS OF CAT GASTROCNEMIUS [J].
BURKE, RE ;
LEVINE, DN ;
TSAIRIS, P ;
ZAJAC, FE .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 234 (03) :723-+
[6]   Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus [J].
Carpentier, A ;
Duchateau, J ;
Hainaut, K .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 534 (03) :903-912
[7]   ACTIVITY OF SINGLE MOTOR UNITS DURING ISOMETRIC TENSION [J].
CLAMANN, HP .
NEUROLOGY, 1970, 20 (03) :254-&
[8]   Motor unit control properties in constant-force isometric contractions [J].
De Luca, CJ ;
Foley, PJ ;
Erim, Z .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (03) :1503-1516
[9]   CONTROL SCHEME GOVERNING CONCURRENTLY ACTIVE HUMAN MOTOR UNITS DURING VOLUNTARY CONTRACTIONS [J].
DE LUCA, CJ ;
LEFEVER, RS ;
MCCUE, MP ;
XENAKIS, AP .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 329 (AUG) :129-142
[10]   The use of surface electromyography in biomechanics [J].
De Luca, CJ .
JOURNAL OF APPLIED BIOMECHANICS, 1997, 13 (02) :135-163