Grover's quantum search algorithm for an arbitrary initial amplitude distribution

被引:92
作者
Biham, E [1 ]
Biham, O
Biron, D
Grassl, M
Lidar, DA
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[3] Univ Karlsruhe, Inst Algorithmen & Kognit Syst, D-76128 Karlsruhe, Germany
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
D O I
10.1103/PhysRevA.60.2742
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Grover's algorithm for quantum searching is generalized to deal with arbitrary initial complex amplitude distributions. First-order linear difference equations are found for the time evolution of the amplitudes of the marked and unmarked states. These equations are solved exactly. New expressions are derived for the optimal time of measurement and the maximal probability of success. They are found to depend on the averages and variances of the initial amplitude distributions of the marked and unmarked states, but not on higher moments. Our results imply that Grover's algorithm is robust against modest noise in the amplitude initialization procedure.[S1050-2947(99)09009-5].
引用
收藏
页码:2742 / 2745
页数:4
相关论文
共 19 条
[1]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[2]  
BORN M, 1959, PRINCIPLES OPTICS, P24
[3]  
Boyer M, 1998, FORTSCHR PHYS, V46, P493, DOI 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO
[4]  
2-P
[5]  
Brassard G, 1998, LECT NOTES COMPUT SC, V1443, P820, DOI 10.1007/BFb0055105
[6]  
BRASSARD G, QUANTPH9705002
[7]  
CERF NJ, QUANTPH9806078
[8]   Experimental implementation of fast quantum searching [J].
Chuang, IL ;
Gershenfeld, N ;
Kubinec, M .
PHYSICAL REVIEW LETTERS, 1998, 80 (15) :3408-3411
[9]  
DURR C, QUANTPH9607014
[10]   Analog analogue of a digital quantum computation [J].
Farhi, E ;
Gutmann, S .
PHYSICAL REVIEW A, 1998, 57 (04) :2403-2406