Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system

被引:147
作者
Pan, Indranil [1 ,2 ]
Das, Saptarshi [2 ]
机构
[1] Indian Inst Technol Delhi, Ctr Energy Studies, New Delhi 110016, India
[2] Jadavpur Univ, Dept Power Engn, Kolkata 700098, India
关键词
Automatic voltage regulator (AVR); Chaotic non-dominated sorting genetic algorithm; Fractional order PID controller; Multi-objective optimization; COORDINATED DESIGN; OPTIMUM DESIGN; NSGA-II; PERFORMANCE; ALGORITHM;
D O I
10.1016/j.ijepes.2012.06.034
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a fractional order (FO) (PID mu)-D-lambda controller is designed to take care of various contradictory objective functions for an automatic voltage regulator (AVR) system. An improved evolutionary non-dominated sorting genetic algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the (PID mu)-D-lambda and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order (PID mu)-D-lambda controller. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:393 / 407
页数:15
相关论文
共 38 条
  • [1] Coordinated design of PSSs and TCSC via bacterial swarm optimization algorithm in a multimachine power system
    Ali, E. S.
    Abd-Elazim, S. M.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 36 (01) : 84 - 92
  • [2] Load frequency control and automatic generation control using fractional-order controllers
    Alomoush, Muwaffaq Irsheid
    [J]. ELECTRICAL ENGINEERING, 2010, 91 (07) : 357 - 368
  • [3] Fuzzy Logic-Based Load-Frequency Control Concerning High Penetration of Wind Turbines
    Bevrani, Hassan
    Daneshmand, Pourya Ranjbar
    [J]. IEEE SYSTEMS JOURNAL, 2012, 6 (01): : 173 - 180
  • [4] Bucolo M., 2002, IEEE Circuits and Systems Magazine, V2, P4, DOI 10.1109/MCAS.2002.1167624
  • [5] Chaotic sequences to improve the performance of evolutionary algorithms
    Caponetto, R
    Fortuna, L
    Fazzino, S
    Xibilia, MG
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (03) : 289 - 304
  • [6] Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system
    Chatterjee, A.
    Mukherjee, V.
    Ghoshal, S. P.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2009, 31 (7-8) : 323 - 333
  • [7] Danqing Guo, 2010, 2010 International Conference on Intelligent Computing and Integrated Systems (ICISS 2010), P20, DOI 10.1109/ICISS.2010.5654998
  • [8] On the selection of tuning methodology of FOPID controllers for the control of higher order processes
    Das, Saptarshi
    Saha, Suman
    Das, Shantanu
    Gupta, Amitava
    [J]. ISA TRANSACTIONS, 2011, 50 (03) : 376 - 388
  • [9] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [10] Efe M, 2011, IND INFORM IEEE T, V99, P1