Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices

被引:186
作者
Schipke, CG
Boucsein, C
Ohlemeyer, C
Kirchhoff, F
Kettenmann, H
机构
[1] Max Delbruck Ctr Mol Med, D-13092 Berlin, Germany
[2] Max Planck Inst Expt Med, D-37075 Gottingen, Germany
关键词
mouse; astrocyte; ATP-release; calcium-wave; microglia; brain slice;
D O I
10.1096/fj.01-0514fje
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pathologic impacts in the brain lead to a widespread activation of microglial cells far beyond the site of injury. Here, we demonstrate that glial Ca2+ waves can trigger responses in microglial cells. We elicited Ca2+ waves in corpus callosum glial cells by electrical stimulation or local adenosine triphosphate (ATP) ejection in acute brain slices. Macroglial cells, but not microglia, were bulk-loaded with Ca2+-sensitive dyes. Using a transgenic animal in which astrocytes were labeled by the enhanced green fluorescence protein (EGFP) allowed us to identify the reacting cell populations: the wave activated a Ca2+ response in both astrocytes and non-astrocytic glial cells and spread over hundreds of micrometers even into the adjacent cortical and ventricular cell layers. Regenerative ATP release and subsequent activation of metabotropic purinergic receptors caused the propagation of the glial Ca2+ wave: the wave was blocked by the purinergic receptor antagonist Reactive Blue 2 and was not affected by the gap junction blocker octanol, but enhanced in Ca2+ free saline. To test whether microglial cells respond to the wave, microglial cells were labeled with a dye-coupled lectin and membrane currents were recorded with the patch-clamp technique. When the wave passed by, a current with the characteristics of a purinergic response was activated. Thus, Ca2+ waves in situ are not restricted to astrocytic cells, but broadly activate different glial cell types.
引用
收藏
页码:255 / +
页数:16
相关论文
共 42 条
[1]   DEMONSTRATION OF POLY-N-ACETYL LACTOSAMINE RESIDUES IN AMEBOID AND RAMIFIED MICROGLIAL CELLS IN RAT-BRAIN BY TOMATO LECTIN-BINDING [J].
ACARIN, L ;
VELA, JM ;
GONZALEZ, B ;
CASTELLANO, B .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1994, 42 (08) :1033-1041
[2]   Tripartite synapses: glia, the unacknowledged partner [J].
Araque, A ;
Parpura, V ;
Sanzgiri, RP ;
Haydon, PG .
TRENDS IN NEUROSCIENCES, 1999, 22 (05) :208-215
[3]   SNARE protein-dependent glutamate release from astrocytes [J].
Araque, A ;
Li, NZ ;
Doyle, RT ;
Haydon, PG .
JOURNAL OF NEUROSCIENCE, 2000, 20 (02) :666-673
[4]  
BERGER T, 1991, J NEUROSCI, V11, P3008
[5]   Prostaglandins stimulate calcium-dependent glutamate release in astrocytes [J].
Bezzi, P ;
Carmignoto, G ;
Pasti, L ;
Vesce, S ;
Rossi, D ;
Rizzini, BL ;
Pozzan, T ;
Volterra, A .
NATURE, 1998, 391 (6664) :281-285
[6]   Electrophysiological properties of microglial cells in normal and pathologic rat brain slices [J].
Boucsein, C ;
Kettenmann, H ;
Nolte, C .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (06) :2049-2058
[7]   INTERCELLULAR SIGNALING IN GLIAL-CELLS - CALCIUM WAVES AND OSCILLATIONS IN RESPONSE TO MECHANICAL STIMULATION AND GLUTAMATE [J].
CHARLES, AC ;
MERRILL, JE ;
DIRKSEN, ER ;
SANDERSON, MJ .
NEURON, 1991, 6 (06) :983-992
[8]   DISTINCT POPULATIONS OF IDENTIFIED GLIAL-CELLS IN THE DEVELOPING RAT SPINAL-CORD SLICE - ION-CHANNEL PROPERTIES AND CELL MORPHOLOGY [J].
CHVATAL, A ;
PASTOR, A ;
MAUCH, M ;
SYKOVA, E ;
KETTENMANN, H .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (01) :129-142
[9]   GLUTAMATE INDUCES CALCIUM WAVES IN CULTURED ASTROCYTES - LONG-RANGE GLIAL SIGNALING [J].
CORNELLBELL, AH ;
FINKBEINER, SM ;
COOPER, MS ;
SMITH, SJ .
SCIENCE, 1990, 247 (4941) :470-473
[10]  
Cotrina ML, 2000, J NEUROSCI, V20, P2835