Geometric Hermite interpolation with Tschirnhausen cubics

被引:73
作者
Meek, DS [1 ]
Walton, DJ [1 ]
机构
[1] UNIV MANITOBA,DEPT COMP SCI,WINNIPEG,MB R3T 2N2,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
geometric Hermite interpolation; Tschirnhausen cubic;
D O I
10.1016/S0377-0427(97)00066-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit formulae are found that give the unique Tschirnhausen cubic that solves a geometric Hermite interpolation problem. That solution is used to create a planar G(1) spline by joining segments of Tschirnhausen cubics. If the geometric Hermite data is from a smooth function, the Tschirnhausen cubic approximates the smooth function. The error in the approximation of a short segment of length h can be expressed as a power series in h. The error is O(h(4)) and the coefficient of the leading term is found.
引用
收藏
页码:299 / 309
页数:11
相关论文
共 14 条
[1]  
Burden RL., 1989, NUMERICAL ANAL
[2]  
de Boor C., 1987, Computer-Aided Geometric Design, V4, P269, DOI 10.1016/0167-8396(87)90002-1
[3]  
Farouki R.T., 1996, ANN NUMER MATH, V3, P63
[4]   THE CONFORMAL-MAP Z-]Z2 OF THE HODOGRAPH PLANE [J].
FAROUKI, RT .
COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (04) :363-390
[5]   PYTHAGOREAN HODOGRAPHS [J].
FAROUKI, RT ;
SAKKALIS, T .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1990, 34 (05) :736-752
[6]  
Feng YY, 1996, J COMPUT APPL MATH, V72, P141, DOI 10.1016/0377-0427(95)00268-5
[7]  
Hoschek J., 1993, FUNDAMENTALS COMPUTE
[8]   APPROXIMATION OF DISCRETE-DATA BY G(1) ARC SPLINES [J].
MEEK, DS ;
WALTON, DJ .
COMPUTER-AIDED DESIGN, 1992, 24 (06) :301-306
[9]  
MEEK DS, 1997, IN PRESS COMPUT AIDE, V14
[10]  
MEEK DS, 1994, J COMPUT APPL MATH, V59, P221