Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites

被引:644
作者
Kim, Youbin [1 ]
Lee, Jinsup [2 ]
Yeom, Min Sun [3 ,4 ]
Shin, Jae Won [5 ]
Kim, Hyungjun [1 ]
Cui, Yi [6 ]
Kysar, Jeffrey W. [7 ]
Hone, James [7 ]
Jung, Yousung [1 ,8 ]
Jeon, Seokwoo [2 ,8 ,9 ]
Han, Seung Min [1 ,8 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[3] KISTI, SMB Knowledge Support Ctr, Ind Supercomp Dept, Taejon 305806, South Korea
[4] Northwestern Univ, Mat Res Sci & Engn Ctr, Evanston, IL 60208 USA
[5] Korea Basic Sci Inst, Div Electron Microscop Res, Taejon 305333, South Korea
[6] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[7] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[8] Korea Adv Inst Sci & Technol, KI NanoCentury, Taejon 305701, South Korea
[9] Korea Adv Inst Sci & Technol, KI NanoCentury, Graphene Res Ctr, Taejon 305701, South Korea
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
新加坡国家研究基金会;
关键词
MECHANISMS; INTERFACES; SCALE; NANOCOMPOSITES; MULTILAYERS; DISPERSION; GRAPHITE; DYNAMICS;
D O I
10.1038/ncomms3114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene is a single-atomic-layer material with excellent mechanical properties and has the potential to enhance the strength of composites. Its two-dimensional geometry, high intrinsic strength and modulus can effectively constrain dislocation motion, resulting in the significant strengthening of metals. Here we demonstrate a new material design in the form of a nanolayered composite consisting of alternating layers of metal (copper or nickel) and monolayer graphene that has ultra-high strengths of 1.5 and 4.0 GPa for copper-graphene with 70-nm repeat layer spacing and nickel-graphene with 100-nm repeat layer spacing, respectively. The ultra-high strengths of these metal-graphene nanolayered structures indicate the effectiveness of graphene in blocking dislocation propagation across the metal-graphene interface. Ex situ and in situ transmission electron microscopy compression tests and molecular dynamics simulations confirm a build-up of dislocations at the graphene interface.
引用
收藏
页数:7
相关论文
共 33 条
[1]   HALL-PETCH RELATIONS FOR MULTILAYERED MATERIALS [J].
ANDERSON, PM ;
LI, C .
NANOSTRUCTURED MATERIALS, 1995, 5 (03) :349-362
[2]   Graphene-aluminum nanocomposites [J].
Bartolucci, Stephen F. ;
Paras, Joseph ;
Rafiee, Mohammad A. ;
Rafiee, Javad ;
Lee, Sabrina ;
Kapoor, Deepak ;
Koratkar, Nikhil .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (27) :7933-7937
[3]   MODIFIED EMBEDDED-ATOM POTENTIALS FOR CUBIC MATERIALS AND IMPURITIES [J].
BASKES, MI .
PHYSICAL REVIEW B, 1992, 46 (05) :2727-2742
[4]   Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness [J].
Carpenter, John S. ;
Misra, Amit ;
Anderson, Peter M. .
ACTA MATERIALIA, 2012, 60 (6-7) :2625-2636
[5]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[6]   The theory of the elastic limit and the solidity of crystal bodies [J].
Frenkel, J .
ZEITSCHRIFT FUR PHYSIK, 1926, 37 (7/8) :572-609
[7]   Size effect on strength and strain hardening of small-scale [111] nickel compression pillars [J].
Frick, C. P. ;
Clark, B. G. ;
Orso, S. ;
Schneider, A. S. ;
Arzt, E. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 489 (1-2) :319-329
[8]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[9]  
Green JA, 2006, ARTHRITIS RHEUM-US, V54, P1705, DOI [10.1002/art.21799, 10.1016/j.actamat.2005.12.004]
[10]   THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS [J].
HALL, EO .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (381) :747-753