Parallel Monte-Carlo Tree Search

被引:129
作者
Chaslot, Guillaume M. J. -B. [1 ]
Winands, Mark H. M. [1 ]
van den Herik, H. Jaap [1 ]
机构
[1] Univ Maastricht, Fac Humanities & Sci, MICC, Games & AI Grp, Maastricht, Netherlands
来源
COMPUTERS AND GAMES | 2008年 / 5131卷
关键词
D O I
10.1007/978-3-540-87608-3_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte-Carlo Tree Search (MCTS) is a new best-first search method that started a revolution in the field of Computer Go. Parallelizing MCTS is an important way to increase the strength of any Go program. In this article, we discuss three parallelization methods for MCTS: leaf parallelization, root parallelization, and tree parallelization. To be effective tree parallelization requires two techniques: adequately handling of (1) local mutexes and (2) virtual loss. Experiments in 13 x 13 Go reveal that in the program MANGO root parallelization may lead to the best results for a specific time setting and specific program parameters. However, as soon as the selection mechanism is able to handle more adequately the balance of exploitation and exploration, tree parallelization should have attention too and could become a second choice for parallelizing MCTS. Preliminary experiments on the smaller 9 x 9 board provide promising prospects for tree parallelization.
引用
收藏
页码:60 / +
页数:2
相关论文
共 12 条
  • [1] [Anonymous], 2006, 6062 INRIA
  • [2] CAZENAVE T, 2007, P COMP GAM WORKSH, P93
  • [3] Chaslot G., 2006, P 18 BENELUX C ART I, P83
  • [4] PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J-B.
    Winands, Mark H. M.
    Van den Herik, H. Jaap
    Uiterwijk, Jos W. H. M.
    Bouzy, Bruno
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2008, 4 (03) : 343 - 357
  • [5] COQUELIN PA, 2007, P UNC ART I IN PRESS
  • [6] Coulom R, 2007, LECT NOTES COMPUT SC, V4630, P72
  • [7] Gelly S, 2006, NIPS NEUR INF EXPL W
  • [8] Gelly S, 2007, ICGA J, V30, P111
  • [9] ANALYSIS OF ALPHA-BETA PRUNING
    KNUTH, DE
    MOORE, RW
    [J]. ARTIFICIAL INTELLIGENCE, 1975, 6 (04) : 293 - 326
  • [10] Bandit based Monte-Carlo planning
    Kocsis, Levente
    Szepesvari, Csaba
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 282 - 293