Automatic Detection and Quantification of Tree-in-Bud (TIB) Opacities From CT Scans

被引:26
作者
Bagci, Ulas [1 ]
Yao, Jianhua
Wu, Albert [1 ]
Caban, Jesus [2 ]
Palmore, Tara N. [3 ]
Suffredini, Anthony F. [4 ]
Aras, Omer [5 ]
Mollura, Daniel J. [1 ]
机构
[1] NIH, Ctr Infect Dis Imaging, Dept Radiol & Imaging Sci, Bethesda, MD 20892 USA
[2] USN, Med Ctr, Bethesda, MD 20889 USA
[3] NIH, Lab Clin Infect Dis, Bethesda, MD 20892 USA
[4] NIH, Dept Crit Care Med, Bethesda, MD 20892 USA
[5] NCI, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Computer-assisted detection (CAD); infectious diseases; lung; tree-in-bud (TIB); Willmore energy; LUNG SEGMENTATION; SCALE; SHAPE;
D O I
10.1109/TBME.2012.2190984
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study presents a novel computer-assisted detection (CAD) system for automatically detecting and precisely quantifying abnormal nodular branching opacities in chest computed tomography (CT), termed tree-in-bud (TIB) opacities by radiology literature. The developed CAD system in this study is based on 1) fast localization of candidate imaging patterns using local scale information of the images, and 2) Mobius invariant feature extraction method based on learned local shape and texture properties of TIB patterns. For fast localization of candidate imaging patterns, we use ball-scale filtering and, based on the observation of the pattern of interest, a suitable scale selection is used to retain only small size patterns. Once candidate abnormality patterns are identified, we extract proposed shape features from regions where at least one candidate pattern occupies. The comparative evaluation of the proposed method with commonly used CAD methods is presented with a dataset of 60 chest CTs (laboratory confirmed 39 viral bronchiolitis human parainfluenza CTs and 21 normal chest CTs). The quantitative results are presented as the area under the receiver operator characteristics curves and a computer score (volume affected by TIB) provided as an output of the CAD system. In addition, a visual grading scheme is applied to the patient data by three well-trained radiologists. Interobserver and observer-computer agreements are obtained by the relevant statistical methods over different lung zones. Experimental results demonstrate that the proposed CAD system can achieve high detection rates with an overall accuracy of 90.96%. Moreover, correlations of observer-observer (R-2 = 0.8848, p < 0.01) and observer-CAD agreements (R-2 = 0.824, p < 0.01) validate the feasibility of the use of the proposed CAD system in detecting and quantifying TIB patterns.
引用
收藏
页码:1620 / 1632
页数:13
相关论文
共 43 条
[1]   Chest Radiographic and CT Findings in Novel Swine-Origin Influenza A (H1N1) Virus (S-OIV) Infection [J].
Agarwal, Prachi P. ;
Cinti, Sandro ;
Kazerooni, Ella A. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (06) :1488-1493
[2]   Automated lung segmentation for thoracic CT: Impact on computer-aided diagnosis [J].
Armato, SG ;
Sensakovic, WF .
ACADEMIC RADIOLOGY, 2004, 11 (09) :1011-1021
[3]  
AYED IB, 2006, IEEE T PATTERN ANAL, V28, P1493, DOI DOI 10.1109/TPAMI.2006.191
[4]  
Bagci U., 2011, ARXIV
[5]   Hierarchical Scale-Based Multiobject Recognition of 3-D Anatomical Structures [J].
Bagci, Ulas ;
Chen, Xinjian ;
Udupa, Jayaram K. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (03) :777-789
[6]  
Bagci U, 2011, LECT NOTES COMPUT SC, V6893, P215, DOI 10.1007/978-3-642-23626-6_27
[7]  
Bagci U, 2011, IEEE ENG MED BIO, P5096, DOI 10.1109/IEMBS.2011.6091262
[8]   Computer-assisted detection of infectious lung diseases: A review [J].
Bagci, Ulas ;
Bray, Mike ;
Caban, Jesus ;
Yao, Jianhua ;
Mollura, Daniel J. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2012, 36 (01) :72-84
[9]   PARALLEL ADABOOST ALGORITHM FOR GABOR WAVELET SELECTION IN FACE RECOGNITION [J].
Bagci, Ulas ;
Bai, Li .
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, :1640-1643
[10]  
Barbu A, 2010, LECT NOTES COMPUT SC, V6361, P28