Thermoelectric properties of intermetallic semiconducting RuIn3 and metallic IrIn3

被引:13
作者
Haldolaarachchige, N. [1 ]
Phelan, W. A. [2 ]
Xiong, Y. M. [1 ]
Jin, R. [1 ]
Chan, J. Y. [2 ]
Stadler, S. [1 ]
Young, D. P. [1 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
BISMUTH TELLURIDE; CONDUCTIVITY; ALLOYS; RUGA3; FEGA3;
D O I
10.1063/1.4793493
中图分类号
O59 [应用物理学];
学科分类号
摘要
Low temperature (<400 K) thermoelectric properties of semiconducting RuIn3 and metallic IrIn3 are reported. RuIn3 is a narrow band gap semiconductor with a large n-type Seebeck coefficient at room temperature ( S ( 290K) approximate to -400 mu V/K), but the thermoelectric figure of merit (ZT(290K) approximate to 0.007) is small because of high electrical resistivity and thermal conductivity (k(290 K) similar to 2.0 W/m K). IrIn3 is a metal (n(290K) approximate to 10(21)cm(-3)) with low thermopower at room temperature (S(290K) approximate to -20 mu V/K). Iridium substitution on the ruthenium site has a dramatic effect on transport properties, which leads to a large improvement in the power factor (S2/p (390K) similar to -207 mu W/mK(2) and corresponding figure of merit (ZT(380K) = 0.053), improving the efficiency of the material by almost an order of magnitude. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793493]
引用
收藏
页数:5
相关论文
共 30 条
[1]   Thermoelectric properties of semiconductorlike intermetallic compounds TMGa3 (TM=Fe, Ru, and Os) [J].
Amagai, Y ;
Yamamoto, A ;
Iida, T ;
Takanashi, Y .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (10) :5644-5648
[2]  
[Anonymous], 1992, Condens. Matter Phys, DOI DOI 10.1016/0921-4526(94)00588-M
[3]   OPTICAL CONDUCTIVITY OF INSULATING AL-BASED ALLOYS - COMPARISON OF QUASI-PERIODIC AND PERIODIC-SYSTEMS [J].
BASOV, DN ;
PIERCE, FS ;
VOLKOV, P ;
POON, SJ ;
TIMUSK, T .
PHYSICAL REVIEW LETTERS, 1994, 73 (13) :1865-1868
[4]   Electronic properties of the semiconductor RuIn3 [J].
Bogdanov, D. ;
Winzer, K. ;
Nekrasov, I. A. ;
Pruschke, T. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (23)
[5]   Yb14MnSb11:: New high efficiency thermoelectric material for power generation [J].
Brown, SR ;
Kauzlarich, SM ;
Gascoin, F ;
Snyder, GJ .
CHEMISTRY OF MATERIALS, 2006, 18 (07) :1873-1877
[6]   Review of electronic transport models for thermoelectric materials [J].
Bulusu, A. ;
Walker, D. G. .
SUPERLATTICES AND MICROSTRUCTURES, 2008, 44 (01) :1-36
[7]   CsBi4Te6:: A high-performance thermoelectric material for low-temperature applications [J].
Chung, DY ;
Hogan, T ;
Brazis, P ;
Rocci-Lane, M ;
Kannewurf, C ;
Bastea, M ;
Uher, C ;
Kanatzidis, MG .
SCIENCE, 2000, 287 (5455) :1024-1027
[8]  
GORDIAKOVA GN, 1958, SOV PHYS-TECH PHYS, V3, P908
[9]   Thermoelectric and Magnetic Properties of a Narrow-Gap Semiconductor FeGa3 [J].
Hadanoi, Yuta ;
Narazu, Shouta ;
Avila, Marcos A. ;
Onimaru, Takahiro ;
Takabatake, Toshiro .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (01)
[10]  
HALDOLAARACHCHI.N, 2012, THESIS LOUISIANA STA