Genomic mapping of chemokine and transforming growth factor genes in swine

被引:8
作者
Hu, Z
Rohrer, GA
Stone, RT
Murtaugh, MP
Beattie, CW
机构
[1] USDA ARS,US MEAT ANIM RES CTR,CLAY CTR,NE 68933
[2] UNIV MINNESOTA,DEPT VET PATHOBIOL,ST PAUL,MN 55108
关键词
D O I
10.1007/s003359900402
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Five chemokine genes, transforming growth factors alpha, beta 2 and 3 (TGFBA, TGFB-2, and TGFB-3), interleukin 8 (IL-8), and monocyte chemoattractant protein 2 (MCP-2), were mapped to porcine linkage groups on Chromosomes 3q, 10p, 7q, 8, and 12q, respectively. Restriction fragment length polymorphisms (RFLPs) for these genes were developed by Southern blot hybridization after digestion of porcine genomic DNA with BamHI and MspI (TGFBA), BamHI and PvuII (TGFB-2), HindIII (TGFB-3), BglII (IL-8), and PstI (MCP-2) and used to genotype the USDA-MARC Swine Reference Population pigs. Sufficient informative meioses, 61 (TGFBA), 58 (TGFB-2), 28 (TGFB-3), 38 (IL-8), and 156 (MCP-2), were available to pursue two-point pairwise linkage analysis with over 1,000 existing loci in the USDA-MARC genome database to establish initial linkage (LOD > 3). Multi-point analysis with CRIMAP determined the most likely order for each new marker. The assignment of the five chemokine genes in swine concurs with previous porcine/human chromosomal homologies based on results from ZOO-FISH and chromosomal painting experiments. These findings add five new informative Type I markers within a single gene family to the swine genome and may help us understand the genetic basis for disease resistance in livestock.
引用
收藏
页码:246 / 249
页数:4
相关论文
共 27 条
[1]  
ANDERSSON L, 1993, ANIM GENET, V24, P205, DOI 10.1111/j.1365-2052.1993.tb00290.x
[2]   THE PIGMAP CONSORTIUM LINKAGE MAP OF THE PIG (SUS SCROFA) [J].
ARCHIBALD, AL ;
HALEY, CS ;
BROWN, JF ;
COUPERWHITE, S ;
MCQUEEN, HA ;
NICHOLSON, D ;
COPPIETERS, W ;
VANDEWEGHE, A ;
STRATIL, A ;
WINTERO, AK ;
FREDHOLM, M ;
LARSEN, NJ ;
NIELSEN, VH ;
MILAN, D ;
WOLOSZYN, N ;
ROBIC, A ;
DALENS, M ;
RIQUET, J ;
GELLIN, J ;
CARITEZ, JC ;
BURGAUD, G ;
OLLIVIER, L ;
BIDANEL, JP ;
VAIMAN, M ;
RENARD, C ;
GELDERMANN, H ;
DAVOLI, R ;
RUYTER, D ;
VERSTEGE, EJM ;
GROENEN, MAM ;
DAVIES, W ;
HOYHEIM, B ;
KEISERUD, A ;
ANDERSSON, L ;
ELLEGREN, H ;
JOHANSSON, M ;
MARKLUND, L ;
MILLER, JR ;
DEAR, DVA ;
SIGNER, E ;
JEFFREYS, AJ ;
MORAN, C ;
LETISSIER, P ;
MULADNO ;
ROTHSCHILD, MF ;
TUGGLE, CK ;
VASKE, D ;
HELM, J ;
LIU, HC ;
RAHMAN, A .
MAMMALIAN GENOME, 1995, 6 (03) :157-175
[3]  
BISHOP MD, 1994, GENETICS, V136, P619
[4]   AN INTEGRATED CYTOGENETIC AND MEIOTIC MAP OF THE BOVINE GENOME [J].
EGGEN, A ;
FRIES, R .
ANIMAL GENETICS, 1995, 26 (04) :215-236
[5]  
ELLEGREN H, 1994, GENETICS, V137, P1089
[6]  
FEINBERG AP, 1983, ANAL BIOCHEM, V137, P226
[7]   THE BOVINE GENOME MAP [J].
FRIES, R ;
EGGEN, A ;
WOMACK, JE .
MAMMALIAN GENOME, 1993, 4 (08) :405-428
[8]  
FRIES R, 1989, ANIM GENET, V20, P3
[9]   A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies [J].
Fronicke, L ;
Chowdhary, BP ;
Scherthan, H ;
Gustavsson, I .
MAMMALIAN GENOME, 1996, 7 (04) :285-290
[10]  
*GEN DAT, 1996, INT COLL SUPP HUM GE