Wave-vector-dependent magnetic susceptibility of classical Heisenberg rings

被引:12
作者
Luscombe, JH
Luban, M
机构
[1] IOWA STATE UNIV SCI & TECHNOL,AMES LAB,AMES,IA 50011
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT PHYS & ASTRON,AMES,IA 50011
关键词
D O I
10.1088/0953-8984/9/32/013
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We first extend previous results of GS Joyce so as to derive the exact wave-vector-dependent susceptibility chi(N)(q, T) for a ring of N classical Heisenberg spins with isotropic nearest-neighbour interactions. Our major result however is a simple, highly accurate, analytic approximation for chi(N)(q, T) which nevertheless preserves an associated sum rule over the Brillouin zone.
引用
收藏
页码:6913 / 6920
页数:8
相关论文
共 12 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions, Dover Books on Mathematics
[2]   COMPLEX DYNAMICS OF MESOSCOPIC MAGNETS [J].
AWSCHALOM, DD ;
DIVINCENZO, DP .
PHYSICS TODAY, 1995, 48 (04) :43-48
[3]  
BUSHBY RJ, 1995, INTRO MOL ELECT
[4]   MAGNETISM IN 1-DIMENSIONAL SYSTEMS - HEISENBERG MODEL FOR INFINITE SPIN [J].
FISHER, ME .
AMERICAN JOURNAL OF PHYSICS, 1964, 32 (05) :343-+
[5]  
Forster D., 1975, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions
[6]   LARGE CLUSTERS OF METAL-IONS - THE TRANSITION FROM MOLECULAR TO BULK MAGNETS [J].
GATTESCHI, D ;
CANESCHI, A ;
PARDI, L ;
SESSOLI, R .
SCIENCE, 1994, 265 (5175) :1054-1058
[7]   CLASSICAL HEISENBERG MODEL [J].
JOYCE, GS .
PHYSICAL REVIEW, 1967, 155 (02) :478-&
[8]   LOCALIZED EIGENSTATES OF ONE-DIMENSIONAL TIGHT-BINDING SYSTEMS - A NEW ALGORITHM [J].
LUBAN, M ;
LUSCOMBE, JH .
PHYSICAL REVIEW B, 1987, 35 (17) :9045-9055
[9]  
LUBAN M, UNPUB
[10]  
LUSCOMBE JH, 1997, UNPUB PHYS REV B