Branching, segmentation and the metapterygial axis: pattern versus process in the vertebrate limb

被引:47
作者
Cohn, MJ [1 ]
Lovejoy, CO
Wolpert, L
Coates, MI
机构
[1] Univ Reading, Sch Anim & Microbial Sci, Div Zool, Reading RG6 6AJ, Berks, England
[2] Kent State Univ, Dept Anthropol, Kent, OH USA
[3] UCL, Dept Anat & Dev Biol, London, England
[4] Univ Chicago, Chicago, IL 60637 USA
[5] UCL, Dept Biol, London, England
关键词
D O I
10.1002/bies.10088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Explanations of the patterns of vertebrate fin and limb evolution are improving as specific hypotheses based on molecular and developmental data are proposed and tested. Comparative analyses of gene expression patterns and functions in developing limbs, and morphological patterns in embryonic, adult and fossil limbs point to digit specification as a key developmental innovation associated with the origin of tetrapods. Digit development during the fin-to-limb transition involved sustained proximodistal outgrowth and a new phase of Hox gene expression in the distal fin bud. These patterning changes in the distal limb have been explained by the linked concepts of the metapterygial axis and the digital arch. These have been proposed to account for the generation of limb pattern by sequential branching and segmentation of precartilagenous elements along the proximodistal axis of the limb. While these ideas have been very fruitful, they have become increasingly difficult to reconcile with experimental and comparative studies of fin and limb development. Here we argue that limb development does not involve a branching mechanism, and reassess the concept of a metapterygial axis in limb development and evolution. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:460 / 465
页数:6
相关论文
共 44 条