Nuclear quantum effects on an enzyme-catalyzed reaction with reaction path potential: Proton transfer in triosephosphate isomerase

被引:42
作者
Wang, ML [1 ]
Lu, ZY [1 ]
Yang, WT [1 ]
机构
[1] Duke Univ, Dept Chem, Durham, NC 27708 USA
关键词
D O I
10.1063/1.2181145
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nuclear quantum mechanical effects have been examined for the proton transfer reaction catalyzed by triosephosphate isomerase, with the normal mode centroid path integral molecular dynamics based on the potential energy surface from the recently developed reaction path potential method. In the simulation, the primary and secondary hydrogens and the C and O atoms involving bond forming and bond breaking were treated quantum mechanically, while all other atoms were dealt classical mechanically. The quantum mechanical activation free energy and the primary kinetic isotope effects were examined. Because of the quantum mechanical effects in the proton transfer, the activation free energy was reduced by 2.3 kcal/mol in comparison with the classical one, which accelerates the rate of proton transfer by a factor of 47.5. The primary kinetic isotope effects of k(H)/k(D) and k(H)/k(T) were estimated to be 4.65 and 9.97, respectively, which are in agreement with the experimental value of 4 +/- 0.3 and 9. The corresponding Swain-Schadd exponent was predicted to be 3.01, less than the semiclassical limit value of 3.34, indicating that the quantum mechanical effects mainly arise from quantum vibrational motion rather than tunneling. The reaction path potential, in conjunction with the normal mode centroid molecular dynamics, is shown to be an efficient computational tool for investigating the quantum effects on enzymatic reactions involving proton transfer. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 73 条
[1]   Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Hammes-Schiffer, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3283-3293
[2]   Network of coupled promoting motions in enzyme catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Rajagopalan, PTR ;
Benkovic, SJ ;
Hammes-Schiffer, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2794-2799
[3]   Vibrationally enhanced hydrogen tunneling in the Escherichia coli thymidylate synthase catalyzed reaction [J].
Agrawal, N ;
Hong, BY ;
Mihai, C ;
Kohen, A .
BIOCHEMISTRY, 2004, 43 (07) :1998-2006
[4]   Canonical variational theory for enzyme kinetics with the protein mean force and multidimensional quantum mechanical tunneling dynamics.: Theory and application to liver alcohol dehydrogenase [J].
Alhambra, C ;
Corchado, J ;
Sánchez, ML ;
Garcia-Viloca, M ;
Gao, J ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45) :11326-11340
[5]   Quantum mechanical dynamical effects in an enzyme-catalyzed proton transfer reaction [J].
Alhambra, C ;
Gao, JL ;
Corchado, JC ;
Villà, J ;
Truhlar, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (10) :2253-2258
[6]  
Allen M. P., 2017, Computer Simulation of Liquids, VSecond, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[7]   Secondary WT and D/T isotope effects in enzymatic enolization reactions. Coupled motion and tunneling in the triosephosphate isomerase reaction [J].
Alston, WC ;
Kanska, M ;
Murray, CJ .
BIOCHEMISTRY, 1996, 35 (39) :12873-12881
[8]  
BAHNSON BJ, 1995, METHOD ENZYMOL, V249, P373
[9]   Enzymatic H-transfer requires vibration-driven extreme tunneling [J].
Basran, J ;
Sutcliffe, MJ ;
Scrutton, NS .
BIOCHEMISTRY, 1999, 38 (10) :3218-3222
[10]  
BELL RP, 1980, TUNNEL EFFECTS CHEM