Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated

被引:241
作者
Sorrentino, RP
Carton, Y
Govind, S
机构
[1] CUNY City Coll, Dept Biol, New York, NY 10031 USA
[2] CUNY Grad Sch & Univ Ctr, New York, NY 10031 USA
[3] CNRS, Lab Populat Genet & Evolut, F-91198 Gif Sur Yvette, France
关键词
cellular immune competence; steroid hormone; signal transduction; parasites; Drosophila;
D O I
10.1006/dbio.2001.0542
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanisms by which an organism becomes immune competent during its development are largely unknown. When infected by eggs of parasitic wasps, Drosophila larvae mount a complex cellular immune reaction in which specialized host blood cells, lamellocytes and crystal cells, are activated and recruited to build a capsule around the parasite egg to block its development. Here, we report that parasitization by the wasp Leptopilina boulardi leads to a dramatic increase in the number of both lamellocytes and crystal cells in the Drosophila larval lymph gland. Furthermore, a limited burst of mitosis follows shortly after infection, suggesting that both cell division and differentiation of lymph gland hemocytes are required for encapsulation. These changes, observed in the lymph glands of third-instar, but never of second-instar hosts, are almost always accompanied by dispersal of the anterior lobes themselves. To confirm a link between host development and immune competence, we infected mutant hosts in which development is blocked during larval or late larval stages. We found that, in genetic backgrounds where ecdysone levels are low (ecdysoneless) or ecdysone signaling is blocked (nonpupariating allele of the transcription factor broach, the encapsulation response is severely compromised. In the third-instar ecdysoneless hosts, postinfection mitotic amplification in the lymph glands is absent and there is a reduction in crystal cell maturation and postinfection circulating lamellocyte concentration. These results suggest that an ecdysone-activated pathway potentiates precursors of effector cell types to respond to parasitization by proliferation and differentiation. We propose that, by affecting a specific pool of hematopoietic precursors, this pathway thus confers immune capacity to third-instar larvae. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:65 / 80
页数:16
相关论文
共 45 条
[1]  
ANDRES AJ, 1992, DEVELOPMENT, V116, P865
[2]   The glucocorticoid receptor is required for stress erythropoiesis [J].
Bauer, A ;
Tronche, F ;
Wessely, O ;
Kellendonk, C ;
Reichardt, HM ;
Steinlein, P ;
Schütz, G ;
Beug, H .
GENES & DEVELOPMENT, 1999, 13 (22) :2996-3002
[3]   A new specific gene for wasp cellular immune resistance in Drosophila [J].
Benassi, V ;
Frey, F ;
Carton, Y .
HEREDITY, 1998, 80 (3) :347-352
[4]  
Braun A, 1997, GENETICS, V147, P623
[5]  
Chiu HL, 2001, ADV EXP MED BIOL, V484, P161
[6]  
DIBELLO PR, 1991, GENETICS, V129, P385
[7]   Treatment of l(2)mbn Drosophila tumorous blood cells with the steroid hormone ecdysone amplifies the inducibility of antimicrobial peptide gene expression [J].
Dimarcq, JL ;
Imler, JL ;
Lanot, R ;
Ezekowitz, RAB ;
Hoffmann, JA ;
Janeway, CA ;
Lagueux, M .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1997, 27 (10) :877-886
[8]   ROLES OF ECDYSONE IN DROSOPHILA DEVELOPMENT [J].
GAREN, A ;
KAUVAR, L ;
LEPESANT, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (11) :5099-5103
[9]  
Gateff E., 1980, Invertebrate Systems in Vitro. Fifth International Conference on Invertebrate Tissue Culture, Rigi-Kaltbad, Switzerland, P517
[10]   CUTANEOUS MYIASIS - IMMUNOHISTOLOGIC AND ULTRASTRUCTURAL MORPHOMETRIC FEATURES OF A HUMAN BOTFLY LESION [J].
GROGAN, TM ;
PAYNE, CM ;
PAYNE, TB ;
SPIER, C ;
CROMEY, DW ;
RANGEL, C ;
RICHTER, L .
AMERICAN JOURNAL OF DERMATOPATHOLOGY, 1987, 9 (03) :232-239