Oligoarginine vectors for intracellular delivery: Design and cellular-uptake mechanisms

被引:150
作者
Futaki, S [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan
[2] JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
关键词
arginine-rich peptide; cell-penetrating peptide; intracellular protein delivery; drug delivery; cellular-uptake mechanism;
D O I
10.1002/bip.20421
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intracellular delivery using membrane-permeable peptide vectors is a recently developed methodology that has been employed successfully to transport various bioactive molecules into cells to modify cell functions. The efficient delivery of proteins, peptides, nucleic acids, liposomes, and so on has been accomplished using this methodology by conjugation of a peptide vector with the cargo molecules. The potentials of this approach for medical and pharmaceutical applications has also attracted our attention. Arginine-rich peptides, including a basic peptide segment derived from the human immunodeficiency virus type I (HIV-I) Tat protein, are categorized into one of the most frequently used peptide vectors. and the efforts of designing novel vectors have been ongoing. Internalization of these peptides has previously been regarded as not employing endocytosis. However, recent reevaluations have demonstrated the significant involvement of endocytosis in the cellular uptake of these peptides. These arginine-rich peptide vectors share many common features in internalization. However, there seem to be certain simultaneous dissimilarities observed in the modes of internalization among these peptides. In this review, the structural features of these arginine-rich peptide vectors have been focused on and the current understandings of their internalization mechanisms are summarized. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 58 条
[1]   Protection against ischemic brain injury by protein therapeutics [J].
Asoh, S ;
Ohsawa, I ;
Mori, T ;
Hiraide, T ;
Katayama, Y ;
Kimura, M ;
Ozaki, D ;
Yamagata, K ;
Ohta, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :17107-17112
[2]   Tat peptide-mediated cellular delivery:: back to basics [J].
Brooks, H ;
Lebleu, B ;
Vivès, E .
ADVANCED DRUG DELIVERY REVIEWS, 2005, 57 (04) :559-577
[3]   ARGININE-MEDIATED RNA RECOGNITION - THE ARGININE FORK [J].
CALNAN, BJ ;
TIDOR, B ;
BIANCALANA, S ;
HUDSON, D ;
FRANKEL, AD .
SCIENCE, 1991, 252 (5009) :1167-1171
[4]   Dendritic oligoguanidines as intracellular translocators [J].
Chung, HH ;
Harms, G ;
Seong, CM ;
Choi, BH ;
Min, CH ;
Taulane, JP ;
Goodman, M .
BIOPOLYMERS, 2004, 76 (01) :83-96
[5]   Regulated portals of entry into the cell [J].
Conner, SD ;
Schmid, SL .
NATURE, 2003, 422 (6927) :37-44
[6]   Antennapedia and HIV transactivator of transcription (TAT) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans [J].
Console, S ;
Marty, C ;
García-Echeverría, C ;
Schwendener, R ;
Ballmer-Hofer, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (37) :35109-35114
[7]   Anti-cancer activity of targeted pro-apoptotic peptides [J].
Ellerby, HM ;
Arap, W ;
Ellerby, LM ;
Kain, R ;
Andrusiak, R ;
Del Rio, G ;
Krajewski, S ;
Lombardo, CR ;
Rao, R ;
Ruoslahti, E ;
Bredesen, DE ;
Pasqualini, R .
NATURE MEDICINE, 1999, 5 (09) :1032-1038
[8]   TAT-MEDIATED DELIVERY OF HETEROLOGOUS PROTEINS INTO CELLS [J].
FAWELL, S ;
SEERY, J ;
DAIKH, Y ;
MOORE, C ;
CHEN, LL ;
PEPINSKY, B ;
BARSOUM, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (02) :664-668
[9]   Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time [J].
Ferrari, A ;
Pellegrini, V ;
Arcangeli, C ;
Fittipaldi, A ;
Giacca, M ;
Beltram, F .
MOLECULAR THERAPY, 2003, 8 (02) :284-294
[10]   A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides [J].
Fischer, R ;
Köhler, K ;
Fotin-Mleczek, M ;
Brock, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :12625-12635