Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics

被引:174
作者
Chater, KF [1 ]
机构
[1] John Innes Ctr, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
关键词
Streptomyces coelicolor; bldA; codon usage; protease inhibitor; evolution of Streptomyces; tRNA;
D O I
10.1098/rstb.2005.1758
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many of the antibiotics used today are made by a group of bacteria called Streptomyces. Streptomycetes evolved about 450 million years ago as branched filamentous organisms adapted to the utilization of plant remains. They reproduce by sending up specialized aerial branches, which form spores. Aerial growth is parasitic on the primary colony, which is digested and reused for aerial growth. The reproductive phase is coordinated with the secretion of antibiotics, which may protect the colony against invading bacteria during aerial growth. A clue to the integration of antibiotic production and aerial growth is provided by bldA mutants, which are defective in both processes. These mutants lack the ability to translate a particularly rare codon, UUA, in the genetic code. The UUA codon (TTA in DNA) is present in several regulatory genes that control sets of antibiotic production genes, and in one, bldH that controls aerial mycelium formation. The regulatory genes for antibiotic production are all involved in self-reinforcing regulatory systems that potentially amplify the regulatory significance of small changes in the efficiency of translation of UUA codons. One of the regulatory targets of bldH is an extracellular protease inhibitor protein that is likely to delay the digestion of the primary biomass until the colony is ready for aerial growth. The use of the UUA codon to orchestrate different aspects of extracellular biology appeared very early in Streptomyces evolution.
引用
收藏
页码:761 / 768
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 1990, EMERGENCE BACTERIAL
[2]   SCP1, a 356 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Brown, S ;
Murphy, LD ;
Harris, DE ;
Quail, MA ;
Parkhill, J ;
Barrell, BG ;
McCormick, JR ;
Santamaria, RI ;
Losick, R ;
Yamasaki, M ;
Kinashi, H ;
Chen, CW ;
Chandra, G ;
Jakimowicz, D ;
Kieser, HM ;
Kieser, T ;
Chater, KF .
MOLECULAR MICROBIOLOGY, 2004, 51 (06) :1615-1628
[3]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[5]  
Chater K.F., 1979, DEV BIOL PROKARYOTES, P93
[6]   Taking a genetic scalpel to the Streptomyces colony [J].
Chater, KF .
MICROBIOLOGY-UK, 1998, 144 :1465-1478
[7]   CODON-ANTICODON PAIRING - WOBBLE HYPOTHESIS [J].
CRICK, FHC .
JOURNAL OF MOLECULAR BIOLOGY, 1966, 19 (02) :548-&
[8]   THE MOLECULAR PHYLOGENY AND SYSTEMATICS OF THE ACTINOMYCETES [J].
EMBLEY, TM ;
STACKEBRANDT, E .
ANNUAL REVIEW OF MICROBIOLOGY, 1994, 48 :257-289
[9]   THE ACT CLUSTER CONTAINS REGULATORY AND ANTIBIOTIC EXPORT GENES, DIRECT TARGETS FOR TRANSLATIONAL CONTROL BY THE BLDA TRANSFER-RNA GENE OF STREPTOMYCES [J].
FERNANDEZMORENO, MA ;
CABALLERO, JL ;
HOPWOOD, DA ;
MALPARTIDA, F .
CELL, 1991, 66 (04) :769-780
[10]   A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket (vol 144, pg 727, 1998) [J].
Guthrie, EP ;
Flaxman, CS ;
White, J ;
Hodgson, DA ;
Bibb, MJ ;
Chater, KF .
MICROBIOLOGY-UK, 1998, 144 :2007-2007