Global expression profiling of acetate-grown Escherichia coli

被引:245
作者
Oh, MK [1 ]
Rohlin, L [1 ]
Kao, KC [1 ]
Liao, JC [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1074/jbc.M110809200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study characterized the transcript profile of Escherichia coli in acetate cultures using DNA microarray on glass slides. Glucose-grown cultures were used as a reference. At the 95% confidence level, 354 genes were up-regulated in acetate, while 370 genes were down-regulated compared with the glucose-grown culture. Generally, more metabolic genes were up-regulated in acetate than other gene groups, while genes involved in cell replication, transcription, and translation machinery tended to be down-regulated. It appears that E. coli commits more resources to metabolism at the expense of growth when cultured in the poor carbon source. The expression profile confirms many known features in acetate metabolism such as the induction of the glyoxylate pathway, tricarboxylic acid cycle, and gluconeogenic genes. It also provided many previously unknown features, including induction of malic enzymes, ppsA, and the glycolate pathway and repression of glycolytic and glucose phosphotransferase genes in acetate. The carbon flux delivered from the malic enzymes and PpsA in acetate was further confirmed by deletion mutations. In general, the gene expression profiles qualitatively agree with the metabolic flux changes and may serve as a predictor for gene function and metabolic flux distribution.
引用
收藏
页码:13175 / 13183
页数:9
相关论文
共 50 条
[1]  
[Anonymous], 1996, Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology
[2]   Global gene expression profiling in Escherichia coli K12 -: The effects of integration host factor [J].
Arfin, SM ;
Long, AD ;
Ito, ET ;
Tolleri, L ;
Riehle, MM ;
Paegle, ES ;
Hatfield, GW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (38) :29672-29684
[3]   Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response [J].
Arnold, CN ;
McElhanon, J ;
Lee, A ;
Leonhart, R ;
Siegele, DA .
JOURNAL OF BACTERIOLOGY, 2001, 183 (07) :2178-2186
[4]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[5]   Regulation of acetate metabolism by protein phosphorylation in enteric bacteria [J].
Cozzone, AJ .
ANNUAL REVIEW OF MICROBIOLOGY, 1998, 52 :127-164
[6]  
CRONAN JE, 1996, ESCHERICHIA COLI SAL, P206
[7]   Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli [J].
Cusa, E ;
Obradors, N ;
Baldomà, L ;
Badía, J ;
Aguilar, J .
JOURNAL OF BACTERIOLOGY, 1999, 181 (24) :7479-7484
[8]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[9]   Inactivation and regulation of the aerobic C4-dicarboxylate transport (dctA) gene of Escherichia coli [J].
Davies, SJ ;
Golby, P ;
Omrani, D ;
Broad, SA ;
Harrington, VL ;
Guest, JR ;
Kelly, DJ ;
Andrews, SC .
JOURNAL OF BACTERIOLOGY, 1999, 181 (18) :5624-5635
[10]   DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli [J].
DeLisa, MP ;
Wu, CF ;
Wang, L ;
Valdes, JJ ;
Bentley, WE .
JOURNAL OF BACTERIOLOGY, 2001, 183 (18) :5239-5247