Fine-Tuning the Energy Levels of a Nonfullerene Small-Molecule Acceptor to Achieve a High Short-Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells

被引:216
作者
Kan, Bin [1 ,2 ,3 ]
Zhang, Jiangbin [4 ,5 ]
Liu, Feng [6 ]
Wan, Xiangjian [1 ,2 ,3 ]
Li, Chenxi [1 ,2 ,3 ]
Ke, Xin [1 ,2 ,3 ]
Wang, Yunchuang [1 ,2 ,3 ]
Feng, Huanran [1 ,2 ,3 ]
Zhang, Yamin [1 ,2 ,3 ]
Long, Guankui [1 ,2 ,3 ]
Friend, Richard H. [5 ]
Bakulin, Artem A. [4 ]
Chen, Yongsheng [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab, Tianjin 300071, Peoples R China
[2] Nankai Univ, Coll Chem, Inst Elementoorgan Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China
[3] Nankai Univ, Coll Chem, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[4] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[5] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[6] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China
关键词
charge separation; high-performance organic solar cells; low bandgap; small-molecule nonfullerene acceptors; ELECTRON-ACCEPTORS; CHARGE SEPARATION; POLYMER; FULLERENE; RECOMBINATION;
D O I
10.1002/adma.201704904
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic solar cell optimization requires careful balancing of current-voltage output of the materials system. Here, such optimization using ultrafast spectroscopy as a tool to optimize the material bandgap without altering ultrafast photophysics is reported. A new acceptor-donor-acceptor (A-D-A)-type small-molecule acceptor NCBDT is designed by modification of the D and A units of NFBDT. Compared to NFBDT, NCBDT exhibits upshifted highest occupied molecular orbital (HOMO) energy level mainly due to the additional octyl on the D unit and downshifted lowest unoccupied molecular orbital (LUMO) energy level due to the fluorination of A units. NCBDT has a low optical bandgap of 1.45 eV which extends the absorption range toward nearIR region, down to approximate to 860 nm. However, the 60 meV lowered LUMO level of NCBDT hardly changes the V-oc level, and the elevation of the NCBDT HOMO does not have a substantial influence on the photophysics of the materials. Thus, for both NCBDT- and NFBDT-based systems, an unusually slow (approximate to 400 ps) but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction. As a result, the PBDB-T: NCBDT devices demonstrate an impressive power conversion efficiency over 12%-among the best for solution-processed organic solar cells.
引用
收藏
页数:8
相关论文
共 51 条
[1]   The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors [J].
Bakulin, Artem A. ;
Rao, Akshay ;
Pavelyev, Vlad G. ;
van Loosdrecht, Paul H. M. ;
Pshenichnikov, Maxim S. ;
Niedzialek, Dorota ;
Cornil, Jerome ;
Beljonne, David ;
Friend, Richard H. .
SCIENCE, 2012, 335 (6074) :1340-1344
[2]   Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages [J].
Baran, D. ;
Kirchartz, T. ;
Wheeler, S. ;
Dimitrov, S. ;
Abdelsamie, M. ;
Gorman, J. ;
Ashraf, R. S. ;
Holliday, S. ;
Wadsworth, A. ;
Gasparini, N. ;
Kaienburg, P. ;
Yan, H. ;
Amassian, A. ;
Brabec, C. J. ;
Durrant, J. R. ;
McCulloch, I. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (12) :3783-3793
[3]  
Baran D, 2017, NAT MATER, V16, P363, DOI [10.1038/NMAT4797, 10.1038/nmat4797]
[4]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[5]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[6]   The fate of electron-hole pairs in polymer: fullerene blends for organic photovoltaics [J].
Causa, Martina ;
De Jonghe-Risse, Jelissa ;
Scarongella, Mariateresa ;
Brauer, Jan C. ;
Buchaca-Domingo, Ester ;
Moser, Jacques-E. ;
Stingelin, Natalie ;
Banerji, Natalie .
NATURE COMMUNICATIONS, 2016, 7
[7]   Modulating the Molecular Packing and Nanophase Blending via a Random Terpolymerization Strategy toward 11% Efficiency Nonfullerene Polymer Solar Cells [J].
Chen, Shanshan ;
Cho, Hye Jin ;
Lee, Jungho ;
Yang, Yankang ;
Zhang, Zhi-Guo ;
Li, Yongfang ;
Yang, Changduk .
ADVANCED ENERGY MATERIALS, 2017, 7 (21)
[8]   High Performance Photovoltaic Applications Using Solution-Processed Small Molecules [J].
Chen, Yongsheng ;
Wan, Xiangjian ;
Long, Guankui .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (11) :2645-2655
[9]   Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells [J].
Dai, Shuixing ;
Zhao, Fuwen ;
Zhang, Qianqian ;
Lau, Tsz-Ki ;
Li, Tengfei ;
Liu, Kuan ;
Ling, Qidan ;
Wang, Chunru ;
Lu, Xinhui ;
You, Wei ;
Zhan, Xiaowei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1336-1343
[10]   Materials Design Considerations for Charge Generation in Organic Solar Cells [J].
Dimitrov, Stoichko D. ;
Durrant, James R. .
CHEMISTRY OF MATERIALS, 2014, 26 (01) :616-630