Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4):: an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic polη

被引:192
作者
Boudsocq, F
Iwai, S
Hanaoka, F
Woodgate, R [1 ]
机构
[1] NICHHD, Sect DNA Replicat Repair & Mutagenesis, NIH, Bethesda, MD 20892 USA
[2] Biomol Engn Res Inst, Osaka 5650874, Japan
[3] Osaka Univ, Inst Mol & Cellular Biol, Suita, Osaka 5650871, Japan
[4] Japan Sci & Technol Corp, CREST, Suita, Osaka 5650871, Japan
[5] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan
关键词
D O I
10.1093/nar/29.22.4607
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phylogenetic analysis of Y-family DNA polymerases suggests that it can be subdivided into several: discrete branches consisting of UmuC/DinB/Rev1/Rad30/Rad30A and Rad30B. The most diverse is the DinB family that is found in all three kingdoms of life. Searches of the complete genome of the crenarchaeon Sulfolobus solfataricus P2 reveal that it possesses a DinB homolog that has been termed DNA polymerase IV (Dpo4). We have overproduced and purified native Dpo4 protein and report here its enzymatic characterization. Dpo4 is thermostable, but can also synthesize DNA at 37 degreesC. Under these conditions, the enzyme exhibits misinsertion fidelities in the range of 8 x 10(-3) to 3 x 10(-4). Dpo4 is distributive but at high enzyme to template ratios can synthesize long stretches of DNA and can substitute for Taq polymerase in PCR. On damaged DNA templates, Dpo4 can facilitate translesion replication of an abasic site, a cis-syn thymine-thymine dimer, as well as acetyl aminofluorene adducted- and cisplatinated-guanine residues. Thus, although phylogenetically, related to DinB polymerases, our studies suggest that the archaeal Dpo4 enzyme exhibits lesion-bypass properties that are, in fact, more akin to those of eukaryotic pol eta.
引用
收藏
页码:4607 / 4616
页数:10
相关论文
共 52 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   Genomic and genetic dissection of an archaeal regulon [J].
Baliga, NS ;
Kennedy, SP ;
Ng, WV ;
Hood, L ;
DasSarma, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2521-2525
[3]  
BOOSALIS MS, 1987, J BIOL CHEM, V262, P14689
[4]   COMPILATION, ALIGNMENT, AND PHYLOGENETIC-RELATIONSHIPS OF DNA-POLYMERASES [J].
BRAITHWAITE, DK ;
ITO, J .
NUCLEIC ACIDS RESEARCH, 1993, 21 (04) :787-802
[5]   Purification of a soluble UmuD'C complex from Escherichia coli - Cooperative binding of UmuD'C to single-stranded DNA [J].
Bruck, I ;
Woodgate, R ;
McEntee, K ;
Goodman, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (18) :10767-10774
[6]  
Cann IKO, 1999, GENETICS, V152, P1249
[7]  
Creighton S, 1995, METHOD ENZYMOL, V262, P232
[8]   The many faces of DNA polymerases: Strategies for mutagenesis and for mutational avoidance [J].
Friedberg, EC ;
Feaver, WJ ;
Gerlach, VL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5681-5683
[9]   Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily [J].
Gerlach, VL ;
Aravind, L ;
Gotway, G ;
Schultz, RA ;
Koonin, EV ;
Friedberg, EC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (21) :11922-11927
[10]   Purification and characterization of polκ, a DNA polymerase encoded by the human DINB1 gene [J].
Gerlach, VL ;
Feaver, WJ ;
Fischhaber, PL ;
Friedberg, EC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (01) :92-98