Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

被引:56
作者
Jiang, Yiquan [1 ,2 ]
Lu, Zheng [2 ]
Liu, Xiaohong [2 ]
Qian, Yun [3 ]
Zhang, Kai [3 ]
Wang, Yuhang [4 ]
Yang, Xiu-Qun [1 ]
机构
[1] Nanjing Univ, CMA NJU Joint Lab Climate Predict Studies, Inst Climate & Global Change Res, Sch Atmospher Sci, Nanjing, Jiangsu, Peoples R China
[2] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA
[3] Pacific Northwest Natl Lab, Richland, WA USA
[4] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
COMMUNITY ATMOSPHERE MODEL; BIOMASS BURNING EMISSIONS; BLACK CARBON; CLIMATE; SNOW; SENSITIVITY; RESOLUTION; REDUCTION; FOREST; REPRESENTATION;
D O I
10.5194/acp-16-14805-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol-radiation interactions (REari) of all fire aerosols is 0.16 +/- 0.01 W m(-2) (1 sigma uncertainty), mainly due to the absorption of fire BC (0.25 +/- 0.01 W m(-2)), while fire POM induces a small effect (-0.05 and 0.04 +/- 0.01 W m(-2) based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol-cloud interactions (REaci) of all fire aerosols is -0.70 +/- 0.05 W m(-2), resulting mainly from the fire POM effect (-0.59 +/- 0.03 W m(-2)). REari (0.43 +/- 0.03 W m(-2)) and REaci (-1.38 +/- 0.23 W m(-2)) in the Arctic are stronger than in the tropics (0.17 +/- 0.02 and -0.82 +/- 0.09 W m(-2) for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to -15 W m(-2)) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 +/- 0.10 W m(-2)) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m(-2)) with the maximum albedo effect occurring in spring (0.12 W m(-2)) when snow starts to melt.
引用
收藏
页码:14805 / 14824
页数:20
相关论文
共 78 条
[1]   The direct radiative effect of biomass burning aerosols over southern Africa [J].
Abel, SJ ;
Highwood, EJ ;
Haywood, JM ;
Stringer, MA .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :1999-2018
[2]   Reduction of tropical cloudiness by soot [J].
Ackerman, AS ;
Toon, OB ;
Stevens, DE ;
Heymsfield, AJ ;
Ramanathan, V ;
Welton, EJ .
SCIENCE, 2000, 288 (5468) :1042-1047
[3]   Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols [J].
Andreae, M. O. ;
Rosenfeld, D. .
EARTH-SCIENCE REVIEWS, 2008, 89 (1-2) :13-41
[4]   Smoking rain clouds over the Amazon [J].
Andreae, MO ;
Rosenfeld, D ;
Artaxo, P ;
Costa, AA ;
Frank, GP ;
Longo, KM ;
Silva-Dias, MAF .
SCIENCE, 2004, 303 (5662) :1337-1342
[5]  
[Anonymous], NCARTN486STR
[6]  
[Anonymous], CONTRIBUTION WORKING
[7]   Causal relationships versus emergent patterns in the global controls of fire frequency [J].
Bistinas, I. ;
Harrison, S. P. ;
Prentice, I. C. ;
Pereira, J. M. C. .
BIOGEOSCIENCES, 2014, 11 (18) :5087-5101
[8]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[9]   Estimation of the aerosol perturbation to the Earth's radiative budget over oceans using POLDER satellite aerosol retrievals [J].
Boucher, O ;
Tanré, D .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (08) :1103-1106
[10]   Fire in the Earth System [J].
Bowman, David M. J. S. ;
Balch, Jennifer K. ;
Artaxo, Paulo ;
Bond, William J. ;
Carlson, Jean M. ;
Cochrane, Mark A. ;
D'Antonio, Carla M. ;
DeFries, Ruth S. ;
Doyle, John C. ;
Harrison, Sandy P. ;
Johnston, Fay H. ;
Keeley, Jon E. ;
Krawchuk, Meg A. ;
Kull, Christian A. ;
Marston, J. Brad ;
Moritz, Max A. ;
Prentice, I. Colin ;
Roos, Christopher I. ;
Scott, Andrew C. ;
Swetnam, Thomas W. ;
van der Werf, Guido R. ;
Pyne, Stephen J. .
SCIENCE, 2009, 324 (5926) :481-484