Using microcultured neurons and hippocampal slices, we found that under conditions that completely block AMPA receptors, kainate induces a reduction in the effectiveness of GABAergic synaptic inhibition. Evoked inhibitory postsynaptic currents (IPSCs) were decreased by kainate by up to 90%, showing a bell-shaped dose-response curve similar to that of native kainate-selective receptors. The down-regulation of GABAergic inhibition was not affected by antagonism of metabotropic receptors, while it was attenuated by CNQX. Kainate increased synaptic failures and reduced the frequency of miniature IPSCs, indicating a presynaptic locus of action. In vivo experiments using brain dialysis demonstrated that kainate reversibly abolished recurrent inhibition and induced an epileptic-like electroencephalogram (EEG) activity. These results indicate that kainate receptor activation downregulates GABAergic inhibition by modulating the reliability of GABA synapses.