Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method

被引:93
作者
Liu, Hui-ping [1 ]
Wang, Zhi-xing [1 ]
Li, Xin-hai [1 ]
Guo, Hua-jun [1 ]
Peng, Wen-jie [1 ]
Zhang, Yun-he [1 ]
Hu, Qi-yang [1 ]
机构
[1] Cent S Univ, Sch Met Sci & Engn, Changsha 410083, Peoples R China
关键词
Lithium ion battery; Lithium iron phosphate; Fe2O3; Carbothermal reduction;
D O I
10.1016/j.jpowsour.2008.02.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiFePO4/C composite cathode material was prepared by carbothermal reduction method, which uses NH4H2PO4, Li2CO3 and cheap Fe2O3 as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO4/C is olivine-type phase, and the addition of the carbon reduced the LiFePO4 grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 degrees C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO4 composites showed a high electrochemical capacity of 159.3 rnAh g(-1) at 0.1 C rate, and the capacity fading is only 2.2% after 30 cycles. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:469 / 472
页数:4
相关论文
共 23 条
[1]   Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J].
Arnold, G ;
Garche, J ;
Hemmer, R ;
Ströbele, S ;
Vogler, C ;
Wohlfahrt-Mehrens, A .
JOURNAL OF POWER SOURCES, 2003, 119 :247-251
[2]   Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :A53-A55
[3]   Versatile synthesis of carbon-rich LiFePO4 enhancing its electrochemical properties [J].
Bauer, EM ;
Bellitto, C ;
Pasquali, M ;
Prosini, PP ;
Righini, G .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (04) :A85-A87
[4]   Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J].
Bewlay, SL ;
Konstantinov, K ;
Wang, GX ;
Dou, SX ;
Liu, HK .
MATERIALS LETTERS, 2004, 58 (11) :1788-1791
[5]   A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J].
Croce, F ;
D'Epifanio, A ;
Hassoun, J ;
Deptula, A ;
Olczac, T ;
Scrosati, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) :A47-A50
[6]   Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode [J].
Cushing, BL ;
Goodenough, JB .
SOLID STATE SCIENCES, 2002, 4 (11-12) :1487-1493
[7]   Pure LiFePO4 with high energy density prepared by water quenching treatment [J].
Gao, Xu Guang ;
Hu, Guo Rong ;
Peng, Zhong Dong ;
Du, Ke ;
Deng, Xin Rong .
CHINESE CHEMICAL LETTERS, 2007, 18 (10) :1256-1260
[8]   Synthesis of LiFePO4 cathode material by microwave processing [J].
Higuchi, M ;
Katayama, K ;
Azuma, Y ;
Yukawa, M ;
Suhara, M .
JOURNAL OF POWER SOURCES, 2003, 119 :258-261
[9]   Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material [J].
Myung, ST ;
Komaba, S ;
Hirosaki, N ;
Yashiro, H ;
Kumagai, N .
ELECTROCHIMICA ACTA, 2004, 49 (24) :4213-4222
[10]   Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates [J].
Padhi, AK ;
Nanjundaswamy, KS ;
Masquelier, C ;
Okada, S ;
Goodenough, JB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (05) :1609-1613