Insight in eukaryotic ABC transporter function by mutation analysis

被引:70
作者
Frelet, A [1 ]
Klein, M [1 ]
机构
[1] Univ Zurich, Zurich Basel Plant Sci Ctr, CH-8008 Zurich, Switzerland
关键词
site-directed mutagenesis; polymorphisms; membrane protein; transport; processing;
D O I
10.1016/j.febslet.2006.01.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRPI/ ABCCI, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCBI and their effects on the function of each protein. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1064 / 1084
页数:21
相关论文
共 271 条
[1]   Molecular biology of adenosine triphosphate-sensitive potassium channels [J].
Aguilar-Bryan, L ;
Bryan, J .
ENDOCRINE REVIEWS, 1999, 20 (02) :101-135
[2]   The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover [J].
Aleksandrov, L ;
Aleksandrov, AA ;
Chang, XB ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :15419-15425
[3]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[4]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[5]   Correlating structure and function in ATP-sensitive K+ channels [J].
Ashcroft, FM ;
Gribble, FM .
TRENDS IN NEUROSCIENCES, 1998, 21 (07) :288-294
[6]   ADENOSINE 5'-TRIPHOSPHATE-SENSITIVE POTASSIUM CHANNELS [J].
ASHCROFT, FM .
ANNUAL REVIEW OF NEUROSCIENCE, 1988, 11 :97-118
[7]   Identification of the high-affinity tolbutamide site on the SUR1 subunit of the KATP channel [J].
Ashfield, R ;
Gribble, FM ;
Ashcroft, SJH ;
Ashcroft, FM .
DIABETES, 1999, 48 (06) :1341-1347
[8]   Crystallographic and single-particle analyses of native and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein [J].
Awayn, NH ;
Rosenberg, MF ;
Kamis, AB ;
Aleksandrov, LA ;
Riordan, JR ;
Ford, RC .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :996-999
[9]   DISCRETE MUTATIONS INTRODUCED IN THE PREDICTED NUCLEOTIDE-BINDING SITES OF THE MDR1 GENE ABOLISH ITS ABILITY TO CONFER MULTIDRUG RESISTANCE [J].
AZZARIA, M ;
SCHURR, E ;
GROS, P .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (12) :5289-5297
[10]   Pharmaco-topology of sulfonylurea receptors -: Separate domains of the regulatory subunits of KATP channel isoforms are required for selective interaction with K+ channel openers [J].
Babenko, AP ;
Gonzalez, G ;
Bryan, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :717-720