On the Metropolis-Hastings acceptance probability to add or drop a quantitative trait locus in Markov chain Monte Carlo-based Bayesian analyses

被引:16
作者
Jannink, JL
Fernando, RL
机构
[1] Iowa State Univ, Dept Agron, Ames, IA 50010 USA
[2] Iowa State Univ, Dept Anim Sci, Ames, IA 50010 USA
关键词
D O I
10.1534/genetics.166.1.641
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The Metropolis-Hastings algorithm used in analyses that estimate the number of QTL segregating in a mapping population requires the calculation of an acceptance probability to add or drop a QTL from the model. Expressions for this acceptance probability need to recognize that sets of QTL are unordered such that the number of equivalent sets increases with the factorial of the QTL number. Here, we show how accounting for this fact affects the acceptance probability and review expressions found in the literature.
引用
收藏
页码:641 / 643
页数:3
相关论文
共 8 条
[1]   On flexible finite polygenic models for multiple-trait evaluation [J].
Bink, MCAM .
GENETICAL RESEARCH, 2002, 80 (03) :245-256
[2]   Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J].
Green, PJ .
BIOMETRIKA, 1995, 82 (04) :711-732
[3]   Markov chain Monte Carlo segregation and linkage analysis for oligogenic models [J].
Heath, SC .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (03) :748-760
[4]  
Lee JK, 2000, AM J HUM GENET, V67, P1232
[5]  
Sillanpää MJ, 1998, GENETICS, V148, P1373
[6]  
Sorensen D., 2002, STAT BIOL HEALTH
[7]   Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo [J].
Stephens, DA .
BIOMETRICS, 1998, 54 (04) :1334-1347
[8]  
Uimari P, 1997, GENETICS, V146, P735