Longitudinal data analysis using t-type regression

被引:12
作者
He, XM
Cui, HJ
Simpson, DG [1 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Beijing Normal Univ, Dept Math, Beijing, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
correlation; t-type regression; m-estimator; one-step estimator; longitudinal data; asymptotic; normality;
D O I
10.1016/j.jspi.2003.06.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a robust estimator of linear regression for longitudinal data by maximizing marginal likelihood of a scaled t-type error distribution. The marginal likelihood can also be applied to the de-correlated response when the within-subject correlation can be consistently estimated from an initial estimate of the model based on the working assumption of independence. While the t-distributed errors can be motivated from a latent hierarchical model as an extension of Gaussian mixed models, our estimators have asymptotic normal distributions for a wider class of error distributions. The estimators have bounded influence functions and can achieve positive breakdown points regardless of the dimension of the covariates. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 269
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1986, ROBUST STAT
[2]  
[Anonymous], [No title captured], DOI DOI 10.2307/2347491
[3]   Bid-ask spreads and the avoidance of odd-eighth quotes on Nasdaq: An examination of exchange listings [J].
Barclay, MJ .
JOURNAL OF FINANCIAL ECONOMICS, 1997, 45 (01) :35-60
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]  
Godambe VP., 1991, ESTIMATING FUNCTIONS
[7]   Breakdown points of t-type regression estimators [J].
He, XM ;
Simpson, DG ;
Wang, GY .
BIOMETRIKA, 2000, 87 (03) :675-687
[8]   A LOCAL BREAKDOWN PROPERTY OF ROBUST-TESTS IN LINEAR-REGRESSION [J].
HE, XM .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 38 (02) :294-305
[9]  
He XM, 1996, STAT SINICA, V6, P367
[10]   A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs [J].
He, XM ;
Shao, QM .
ANNALS OF STATISTICS, 1996, 24 (06) :2608-2630