Isolation and characterization of the human and mouse homologues (SUPT4H and Supt4h) of the yeast SPT4 gene

被引:18
作者
Chiang, PW
Wang, SQ
Smithivas, P
Song, WJ
Crombez, E
Akhtar, A
Im, R
Greenfield, J
Ramamoorthy, S
VanKeuren, M
Blackburn, CC
Tsai, CH
Kurnit, DM
机构
[1] UNIV MICHIGAN,MED CTR,DEPT HUMAN GENET,ANN ARBOR,MI 48109
[2] HOWARD HUGHES MED INST,ANN ARBOR,MI
[3] UNIV OXFORD,JOHN RADCLIFFE HOSP,NUFFIELD DEPT MED,OXFORD,ENGLAND
[4] UNIV TORONTO,DEPT MED,TORONTO,ON,CANADA
关键词
D O I
10.1006/geno.1996.0299
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To study gene regulation mediated by chromatin in mammals, we isolated the human (SUPT4H) and murine (Supt4h) counterparts of the yeast gene encoding SPT4; the product of this gene presumably interacts with the products of the mammalian homologues (which we have also cloned) of yeast SPT5 and SPT6, thereby modulating chromatin formation and activity. We isolated two different sized human SUPT4H cDNA clones (1464 and 728 nt) and one murine Supt4h (688 nt) cDNA clone; all three encode the same 117-amino-acid protein with conservation of the zinc finger motif found in SPT4. Conservation of this zinc finger motif from yeast to mouse and human implies functional importance. Although the overall sequence homology at the DNA level between the human 728-nt transcript and the murine 688-nt transcript is only 78.4%, the DNA sequence homology is 97.7% within the coding region. At the protein level, the amino acid sequences of the translated murine Supt4h and the human SUPT4H gene products are identical, The likely functional copy of SUPT4H, which has at least two introns, maps to human chromosome 17, with candidate intronless pseudogenes on chromosomes 2, 12, and 20. Buttressing the hypothesis that this is a gene required constitutively, both the human SUPT4H transcripts and the murine Supt4h transcript are expressed widely, although not at equal levels (e.g., such as most histones), in all fetal and adult tissues that we examined. (C) 1996 Academic Press, Inc.
引用
收藏
页码:368 / 375
页数:8
相关论文
共 18 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]  
BASSETT DE, IN PRESS TRENDS GENE
[3]   THE BASICS OF BASAL TRANSCRIPTION BY RNA-POLYMERASE-II [J].
BURATOWSKI, S .
CELL, 1994, 77 (01) :1-3
[4]   EXPRESSED SEQUENCE TAGS FROM THE LONG ARM OF HUMAN-CHROMOSOME-21 [J].
CHIANG, PW ;
DZIDA, G ;
GRUMET, J ;
CHENG, JF ;
SONG, WJ ;
CROMBEZ, E ;
VANKEUREN, ML ;
KURNIT, DM .
GENOMICS, 1995, 29 (02) :383-389
[5]  
CHIANG PW, 1996, IN PRESS GENOMICS
[6]   IDENTIFICATION OF PROTEIN CODING REGIONS BY DATABASE SIMILARITY SEARCH [J].
GISH, W ;
STATES, DJ .
NATURE GENETICS, 1993, 3 (03) :266-272
[7]   CANDIDATE GENE FOR THE CHROMOSOME-1 FAMILIAL ALZHEIMERS-DISEASE LOCUS [J].
LEVYLAHAD, E ;
WASCO, W ;
POORKAJ, P ;
ROMANO, DM ;
OSHIMA, J ;
PETTINGELL, WH ;
YU, CE ;
JONDRO, PD ;
SCHMIDT, SD ;
WANG, K ;
CROWLEY, AC ;
FU, YH ;
GUENETTE, SY ;
GALAS, D ;
NEMENS, E ;
WIJSMAN, EM ;
BIRD, TD ;
SCHELLENBERG, GD ;
TANZI, RE .
SCIENCE, 1995, 269 (5226) :973-977
[8]  
Lincoln S.E., 1991, PRIMER COMPUTER PROG
[9]   MOLECULAR AND GENETIC-CHARACTERIZATION OF SPT4, A GENE IMPORTANT FOR TRANSCRIPTION INITIATION IN SACCHAROMYCES-CEREVISIAE [J].
MALONE, EA ;
FASSLER, JS ;
WINSTON, F .
MOLECULAR AND GENERAL GENETICS, 1993, 237 (03) :449-459
[10]   ANIMAL-CELL CYCLES AND THEIR CONTROL [J].
NORBURY, C ;
NURSE, P .
ANNUAL REVIEW OF BIOCHEMISTRY, 1992, 61 :441-470