Network Context and Selection in the Evolution to Enzyme Specificity

被引:216
作者
Nam, Hojung [1 ]
Lewis, Nathan E. [1 ,3 ,4 ]
Lerman, Joshua A. [2 ]
Lee, Dae-Hee [1 ]
Chang, Roger L. [2 ]
Kim, Donghyuk [1 ]
Palsson, Bernhard O. [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Grad Program, La Jolla, CA 92093 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, Sch Med, Boston, MA 02115 USA
[4] Harvard Univ, Dept Genet, Sch Med, Boston, MA 02115 USA
关键词
ESCHERICHIA-COLI; METABOLIC NETWORK; GENE-EXPRESSION; FLUXES; YEAST; RECONSTRUCTION; PROMISCUITY; PERSPECTIVE; MODELS;
D O I
10.1126/science.1216861
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes and specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity.
引用
收藏
页码:1101 / 1104
页数:4
相关论文
共 28 条
[1]   The 'evolvability' of promiscuous protein functions [J].
Aharoni, A ;
Gaidukov, L ;
Khersonsky, O ;
Gould, SM ;
Roodveldt, C ;
Tawfik, DS .
NATURE GENETICS, 2005, 37 (01) :73-76
[2]   Global organization of metabolic fluxes in the bacterium Escherichia coli [J].
Almaas, E ;
Kovács, B ;
Vicsek, T ;
Oltvai, ZN ;
Barabási, AL .
NATURE, 2004, 427 (6977) :839-843
[3]   The activity reaction core and plasticity of metabolic networks [J].
Almaas, Eivind ;
Oltvai, Zoltan N. ;
Barabasi, Albert-Laszlo .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (07) :557-563
[4]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[5]   The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters [J].
Bar-Even, Arren ;
Noor, Elad ;
Savir, Yonatan ;
Liebermeister, Wolfram ;
Davidi, Dan ;
Tawfik, Dan S. ;
Milo, Ron .
BIOCHEMISTRY, 2011, 50 (21) :4402-4410
[6]   Sampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes [J].
Bordel, Sergio ;
Agren, Rasmus ;
Nielsen, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (07) :16
[7]   Origins of Specificity and Promiscuity in Metabolic Networks [J].
Carbonell, Pablo ;
Lecointre, Guillaume ;
Faulon, Jean-Loup .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (51) :43994-44004
[8]   Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism [J].
Chang, Roger L. ;
Ghamsari, Lila ;
Manichaikul, Ani ;
Hom, Erik F. Y. ;
Balaji, Santhanam ;
Fu, Weiqi ;
Shen, Yun ;
Hao, Tong ;
Palsson, Bernhard O. ;
Salehi-Ashtiani, Kourosh ;
Papin, Jason A. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[9]   Toward a Systems Biology Perspective on Enzyme Evolution [J].
Copley, Shelley D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (01) :3-10
[10]   Multiple knockout analysis of genetic robustness in the yeast metabolic network [J].
Deutscher, David ;
Meilijson, Isaac ;
Kupiec, Martin ;
Ruppin, Eytan .
NATURE GENETICS, 2006, 38 (09) :993-998