Efficient quantum computing of complex dynamics

被引:84
作者
Benenti, G
Casati, G
Montangero, S
Shepelyansky, DL
机构
[1] Univ Insubria, Int Ctr Study Dynam Syst, I-22100 Como, Italy
[2] Ist Nazl Fis Mat, Unita Como, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[4] Univ Toulouse 3, CNRS, UMR 5626, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1103/PhysRevLett.87.227901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a quantum algorithm which uses the number of qubits in an optimal way and efficiently simulates a physical model with rich and complex dynamics described by the quantum sawtooth map. The numerical study of the effect of static imperfections in the quantum computer hardware shows that the main elements of the phase space structures are accurately reproduced up to a time scale which is polynomial in the number of qubits. The errors generated by these imperfections are more significant than the errors of random noise in gate operations.
引用
收藏
页码:227901 / 227901
页数:4
相关论文
共 28 条
[1]  
BENENTI G, IN PRESS EUR PHYS D
[2]   Diffusion and localization in chaotic billiards [J].
Borgonovi, F ;
Casati, G ;
Li, BW .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4744-4747
[3]   Localization in discontinuous quantum systems [J].
Borgonovi, F .
PHYSICAL REVIEW LETTERS, 1998, 80 (21) :4653-4656
[4]   Quantum localization and cantori in the stadium billiard [J].
Casati, G ;
Prosen, T .
PHYSICAL REVIEW E, 1999, 59 (03) :R2516-R2519
[5]   EVOLUTION AND EXACT EIGENSTATES OF A RESONANT QUANTUM SYSTEM [J].
CHANG, SJ ;
SHI, KJ .
PHYSICAL REVIEW A, 1986, 34 (01) :7-22
[6]   RESONANCES AND TRANSPORT IN THE SAWTOOTH MAP [J].
CHEN, Q ;
DANA, I ;
MEISS, JD ;
MURRAY, NW ;
PERCIVAL, IC .
PHYSICA D, 1990, 46 (02) :217-240
[7]   RESONANCES AND DIFFUSION IN PERIODIC HAMILTONIAN MAPS [J].
DANA, I ;
MURRAY, NW ;
PERCIVAL, IC .
PHYSICAL REVIEW LETTERS, 1989, 62 (03) :233-236
[8]   Quantum computation and Shor's factoring algorithm [J].
Ekert, A ;
Jozsa, R .
REVIEWS OF MODERN PHYSICS, 1996, 68 (03) :733-753
[9]   Time dynamics in chaotic many-body systems: Can chaos destroy a quantum computer? [J].
Flambaum, VV .
AUSTRALIAN JOURNAL OF PHYSICS, 2000, 53 (04) :489-497
[10]   KOLMOGOROV-ARNOLD-MOSER BARRIERS IN THE QUANTUM DYNAMICS OF CHAOTIC SYSTEMS [J].
GEISEL, T ;
RADONS, G ;
RUBNER, J .
PHYSICAL REVIEW LETTERS, 1986, 57 (23) :2883-2886