A nonparametric test for the general two-sample problem

被引:90
作者
Baumgartner, W [1 ]
Weiss, P
Schindler, H
机构
[1] Johannes Kepler Univ, Inst Biophys, A-4040 Linz, Austria
[2] Johannes Kepler Univ, Dept Stochast, A-4040 Linz, Austria
关键词
Cramer-von Mises test; nonparametric statistics; power of test; rank test;
D O I
10.2307/2533862
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
For two independently drawn samples of data, a novel statistical test is proposed for the null hypothesis that both samples originate from the same population. The underlying distribution function does not need to be known but must be continuous, i.e., it is a nonparametric test. It is demonstrated for suitable examples that the test is easy to apply and is at least as powerful as the commonly used nonparametric tests, i.e., the KolmogorovSmirnov, the Cramer-von Mises, and the Wilcoxon tests.
引用
收藏
页码:1129 / 1135
页数:7
相关论文
共 9 条
[1]   ASYMPTOTIC THEORY OF CERTAIN GOODNESS OF FIT CRITERIA BASED ON STOCHASTIC PROCESSES [J].
ANDERSON, TW ;
DARLING, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02) :193-212
[2]   DISTRIBUTION OF 2-SAMPLE CRAMER-VON MISES CRITERION [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1148-&
[3]  
[Anonymous], 1962, HDB NONPARAMETRIC ST
[4]  
BRUNING H, 1978, NICHTPARAMETRISCHE S
[5]  
Gibbons J., 1992, Nonparametric Statistical Inference
[6]  
Hofer GF, 1997, BIOPHYS J, V73, P1857, DOI 10.1016/S0006-3495(97)78216-X
[7]  
HOHENTHANNER K, 1997, THESIS U LINZ LINZ A
[8]  
Lehmann E.L., 1966, TESTING STAT HYPOTHE, V3, P396, DOI [10.1007/0-387-27605-X, DOI 10.1007/0-387-27605-X]
[9]  
Vetterling W. T, 2002, NUMERICAL RECIPES C