Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba

被引:140
作者
Mori, IC
Pinontoan, R
Kawano, T
Muto, S [1 ]
机构
[1] Nagoya Univ, Biosci Ctr, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] Nagoya Univ, Grad Sch Bioagr Sci, Chikusa Ku, Nagoya, Aichi 4648601, Japan
基金
日本学术振兴会;
关键词
peroxidase; salicylic acid; stomatal closure; superoxide anion; Vicia faba;
D O I
10.1093/pcp/pce176
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salicylic acid (SA), the known mediator of systemic acquired resistance, induced stomatal closure of Vicia faba L. Application of SA to the epidermal peels evoked an elevation of chemiluminescence of Cripridina lucigenin-derived chemiluminescent reagent (CLA) which is sensitive to superoxide anion (O-2(radical anion)). The SA-induced generation of chemiluminescence was suppressed by O-2(radical anion)-specific scavengers superoxide dismutase (SOD) and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron). These results suggest that O-2(radical anion) was generated in epidermal peels by SA-treatment. A peroxidase inhibitor salicylhydroxamic acid (SHAM) inhibited guaiacol peroxidase activity and suppressed the SA-induced CLA chemiluminescence in the epidermal peels, suggesting that O-2(radical anion) generation occurred by the peroxidase-catalyzed reaction as proposed for SA-treated tobacco cell suspension culture [Kawano et al. (1998) Plant Cell Physiol. 39: 721]. SOD, Tiron or SHAM suppressed the SA-induced stomatal closure. Moreover, application of superoxide-generating system also induced stomatal closure. These results support the concept of involvement of reactive oxygen species in signal transduction in SA-induced stomatal closure.
引用
收藏
页码:1383 / 1388
页数:6
相关论文
共 18 条
[1]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[2]   ACTIVE OXYGEN SPECIES IN THE INDUCTION OF PLANT SYSTEMIC ACQUIRED-RESISTANCE BY SALICYLIC-ACID [J].
CHEN, ZX ;
SILVA, H ;
KLESSIG, DF .
SCIENCE, 1993, 262 (5141) :1883-1886
[3]  
Chivasa S, 1997, PLANT CELL, V9, P547, DOI 10.1105/tpc.9.4.547
[4]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250
[5]   Stomata from npq1, a zeaxanthin-less arabidopsis mutant, lack a specific response to blue light [J].
Frechilla, S ;
Zhu, JX ;
Talbott, LD ;
Zeiger, E .
PLANT AND CELL PHYSIOLOGY, 1999, 40 (09) :949-954
[6]   REQUIREMENT OF SALICYLIC-ACID FOR THE INDUCTION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
GAFFNEY, T ;
FRIEDRICH, L ;
VERNOOIJ, B ;
NEGROTTO, D ;
NYE, G ;
UKNES, S ;
WARD, E ;
KESSMANN, H ;
RYALS, J .
SCIENCE, 1993, 261 (5122) :754-756
[7]  
IKEDASAITO M, 1991, J BIOL CHEM, V266, P3611
[8]   Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture [J].
Kawano, T ;
Muto, S .
JOURNAL OF EXPERIMENTAL BOTANY, 2000, 51 (345) :685-693
[9]   Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: The earliest events in salicylic acid signal transduction [J].
Kawano, T ;
Sahashi, N ;
Takahashi, K ;
Uozumi, N ;
Muto, S .
PLANT AND CELL PHYSIOLOGY, 1998, 39 (07) :721-730
[10]   A FUSICOCCIN BINDING-PROTEIN BELONGS TO THE FAMILY OF 14-3-3-BRAIN PROTEIN HOMOLOGS [J].
KORTHOUT, HAAJ ;
DEBOER, AH .
PLANT CELL, 1994, 6 (11) :1681-1692