Critical-point finite-size scaling in the microcanonical ensemble

被引:14
作者
Bruce, AD [1 ]
Wilding, NB [1 ]
机构
[1] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 04期
关键词
D O I
10.1103/PhysRevE.60.3748
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically divergent heat capacity. The link between the microcanonical entropy and the canonical energy distribution is exploited to establish the former, and corroborate its predicted scaling form, in the case of the 3d Ising universality class. We show that the scaling behavior emerges clearly when one accounts for the effects of the negative background constant contribution to the canonical critical specific heat. We show that this same constant plays a significant role in determining the observed differences between the canonical and microcanonical specific heats of systems of finite size, in the critical region. [S1063-651X(99)07510-8].
引用
收藏
页码:3748 / 3760
页数:13
相关论文
共 39 条
[1]   ISING-MODEL MONTE-CARLO SIMULATIONS - DENSITY OF STATES AND MASS GAP [J].
ALVES, NA ;
BERG, BA ;
VILLANOVA, R .
PHYSICAL REVIEW B, 1990, 41 (01) :383-394
[2]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[3]   CRITICAL PHENOMENA IN SYSTEMS OF FINITE THICKNESS .1. SPHERICAL MODEL [J].
BARBER, MN ;
FISHER, ME .
ANNALS OF PHYSICS, 1973, 77 (1-2) :1-78
[4]   ISING UNIVERSALITY IN 3 DIMENSIONS - A MONTE-CARLO STUDY [J].
BLOTE, HWJ ;
LUIJTEN, E ;
HERINGA, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6289-6313
[5]   A RIGOROUS THEORY OF FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BORGS, C ;
KOTECKY, R .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (1-2) :79-119
[6]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[7]   SCALING FIELDS AND UNIVERSALITY OF THE LIQUID-GAS CRITICAL-POINT [J].
BRUCE, AD ;
WILDING, NB .
PHYSICAL REVIEW LETTERS, 1992, 68 (02) :193-196
[8]   CRITICAL FINITE-SIZE-SCALING OF THE FREE-ENERGY [J].
BRUCE, AD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (12) :3345-3349
[9]   GAUSSIAN ENSEMBLE - AN ALTERNATE MONTE-CARLO SCHEME [J].
CHALLA, MSS ;
HETHERINGTON, JH .
PHYSICAL REVIEW A, 1988, 38 (12) :6324-6337
[10]  
Cramer H., 1946, Mathematical Methods of Statistics