Predictability: a way to characterize complexity

被引:262
作者
Boffetta, G
Cencini, M
Falcioni, M
Vulpiani, A
机构
[1] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy
[2] Unita Univ Turin, Ist Nazl Fis Mat, Turin, Italy
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[5] Ist Nazl Fis Mat, Unita Roma 1, Rome, Italy
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2002年 / 356卷 / 06期
关键词
predictability; high-dimensional chaos; algorithmic complexity; turbulence;
D O I
10.1016/S0370-1573(01)00025-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Different aspects of the predictability problem in dynamical systems are reviewed. The deep relation among Lyapunov exponents, Kolmogorov-Sinai entropy, Shannon entropy and algorithmic complexity is discussed. In particular, we emphasize how a characterization of the unpredictability of a system gives a measure of its complexity. Adopting this point of view, we review some developments in the characterization of the predictability of systems showing different kinds of complexity: from low-dimensional systems to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence. A special attention is devoted to finite-time and finite-resolution effects on predictability, which can be accounted with suitable generalization of the standard indicators. The problems involved in systems with intrinsic randomness is discussed, with emphasis on the important problems of distinguishing chaos from noise and of modeling the system. The characterization of irregular behavior in systems with discrete phase space is also considered. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:367 / 474
页数:108
相关论文
共 234 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[3]   Exit-time approach to ε-entropy [J].
Abel, M ;
Biferale, L ;
Cencini, M ;
Falcioni, M ;
Vergni, D ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :6002-6005
[4]   Exit-times and ε-entropy for dynamical systems, stochastic processes, and turbulence [J].
Abel, M ;
Biferale, L ;
Cencini, M ;
Falcioni, M ;
Vergni, D ;
Vulpiani, A .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 147 (1-2) :12-35
[5]  
ALEKSEEV VM, 1981, PHYS REP, V75, P287, DOI 10.1016/0370-1573(81)90186-1
[6]  
Amit D. J., 1992, MODELING BRAIN FUNCT
[7]  
[Anonymous], 1990, DISSIPATIVE STRUCTUR, DOI DOI 10.1016/B978-0-08-092445-8.50011-0
[8]  
[Anonymous], 1996, Proc. seminar on predictability, DOI DOI 10.1017/CBO9780511617652.004
[9]  
[Anonymous], 1971, STAT FLUID DYNAMICS
[10]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89