Coupling nonpolar and polar solvation free energies in implicit solvent models

被引:114
作者
Dzubiella, J [2 ]
Swanson, JMJ
McCammon, JA
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, NSF, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1063/1.2171192
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent studies on the solvation of atomistic and nanoscale solutes indicate that a strong coupling exists between the hydrophobic, dispersion, and electrostatic contributions to the solvation free energy, a facet not considered in current implicit solvent models. We suggest a theoretical formalism which accounts for coupling by minimizing the Gibbs free energy of the solvent with respect to a solvent volume exclusion function. The resulting differential equation is similar to the Laplace-Young equation for the geometrical description of capillary interfaces but is extended to microscopic scales by explicitly considering curvature corrections as well as dispersion and electrostatic contributions. Unlike existing implicit solvent approaches, the solvent accessible surface is an output of our model. The presented formalism is illustrated on spherically or cylindrically symmetrical systems of neutral or charged solutes on different length scales. The results are in agreement with computer simulations and, most importantly, demonstrate that our method captures the strong sensitivity of solvent expulsion and dewetting to the particular form of the solvent-solute interactions.
引用
收藏
页数:12
相关论文
共 68 条
[1]   MOLECULAR-DYNAMICS SIMULATION OF THE ORTHOBARIC DENSITIES AND SURFACE-TENSION OF WATER [J].
ALEJANDRE, J ;
TILDESLEY, DJ ;
CHAPELA, GA .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (11) :4574-4583
[2]   Molecular dynamics investigation of water permeation through nanopores [J].
Allen, R ;
Hansen, JP ;
Melchionna, S .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (07) :3905-3919
[3]   Intermittent permeation of cylindrical nanopores by water [J].
Allen, R ;
Melchionna, S ;
Hansen, JP .
PHYSICAL REVIEW LETTERS, 2002, 89 (17)
[4]   Water dynamics and dewetting transitions in the small mechanosensitive channel MscS [J].
Anishkin, A ;
Sukharev, S .
BIOPHYSICAL JOURNAL, 2004, 86 (05) :2883-2895
[5]   Hydration and conformational equilibria of simple hydrophobic and amphiphilic solutes [J].
Ashbaugh, HS ;
Kaler, EW ;
Paulaitis, ME .
BIOPHYSICAL JOURNAL, 1998, 75 (02) :755-768
[6]   Thermodynamic analysis of bridging bubbles and a quantitative comparison with the measured hydrophobic attraction [J].
Attard, P .
LANGMUIR, 2000, 16 (10) :4455-4466
[7]   Improving implicit solvent simulations: a Poisson-centric view [J].
Baker, NA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (02) :137-143
[8]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[9]   A hydrophobic gating mechanism for nanopores [J].
Beckstein, O ;
Biggin, PC ;
Sansom, MSP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (51) :12902-12905
[10]   Solvation of complex molecules in a polar liquid: An integral equation theory [J].
Beglov, D ;
Roux, B .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (21) :8678-8689