Digital computation of the fractional Fourier transform

被引:879
作者
Ozaktas, HM
Ankan, O
Kutay, MA
Bozdagi, G
机构
[1] Electrical Engineering, Bilkent University
关键词
D O I
10.1109/78.536672
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An algorithm for efficient and accurate computation of the fractional Fourier transform is given, For signals with time-bandwidth product N, the presented algorithm computes the fractional transform in O(N log N) time. A definition for the discrete fractional Fourier transform that emerges from our analysis is also discussed.
引用
收藏
页码:2141 / 2150
页数:10
相关论文
共 45 条
[1]   A SIMPLE REALIZATION OF FRACTIONAL FOURIER-TRANSFORM AND RELATION TO HARMONIC-OSCILLATOR GREEN-FUNCTION [J].
AGARWAL, GS ;
SIMON, R .
OPTICS COMMUNICATIONS, 1994, 110 (1-2) :23-26
[2]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[3]  
BECK M, 1993, OPT LETT, V18, P2041, DOI 10.1364/OL.18.002041
[4]   FRACTIONAL FOURIER-TRANSFORMS AND OPTICAL-SYSTEMS [J].
BERNARDO, LM ;
SOARES, ODD .
OPTICS COMMUNICATIONS, 1994, 110 (5-6) :517-522
[5]  
BERNARDO LM, INPRESS J OPT SOC AM
[6]   TIME FREQUENCY-DISTRIBUTIONS - A REVIEW [J].
COHEN, L .
PROCEEDINGS OF THE IEEE, 1989, 77 (07) :941-981
[7]   INTERPOLATION AND DECIMATION OF DIGITAL SIGNALS - A TUTORIAL REVIEW [J].
CROCHIERE, RE ;
RABINER, LR .
PROCEEDINGS OF THE IEEE, 1981, 69 (03) :300-331
[8]   EIGENVECTORS AND FUNCTIONS OF THE DISCRETE FOURIER-TRANSFORM [J].
DICKINSON, BW ;
STEIGLITZ, K .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (01) :25-31
[9]  
Dunford N., 1958, LINEAR OPERATORS
[10]  
FONOLLOSA JR, 1994, P IEEE INT C ACOUST