Matrix renumbering ILU: An effective algebraic multilevel ILU preconditioner for sparse matrices

被引:53
作者
Botta, EFF [1 ]
Wubs, FW [1 ]
机构
[1] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
关键词
multilevel methods; preconditioning; ILU; dropping strategies; Krylov-subspace methods;
D O I
10.1137/S0895479897319301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a multilevel-like ILU preconditioner is introduced. The ILU factorization generates its own ordering during the elimination process. Both ordering and dropping depend on the size of the entries. The method can handle structured and unstructured problems. Results are presented for some important classes of matrices and for several well-known test examples. The results illustrate the efficiency of the method and show in several cases near grid independent convergence.
引用
收藏
页码:1007 / 1026
页数:20
相关论文
共 62 条
[1]  
[Anonymous], 1960, SBORNIK
[2]   THE NESTED RECURSIVE 2-LEVEL FACTORIZATION METHOD FOR 9-POINT DIFFERENCE MATRICES [J].
AXELSSON, O ;
EIJKHOUT, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (06) :1373-1400
[3]  
AXELSSON O, 1983, PRECONDITIONING METH, P219
[4]  
BANK RE, IN PRESS NUMER MATH
[5]   EXISTENCE CRITERIA FOR PARTIAL MATRIX FACTORIZATIONS IN ITERATIVE METHODS [J].
BEAUWENS, R ;
QUENON, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :615-643
[6]  
BOTTA E., 1996, P C ALG MULT METH AP, P105
[7]   How fast the Laplace equation was solved in 1995 [J].
Botta, EFF ;
Dekker, K ;
Notay, Y ;
vanderPloeg, A ;
Vuik, C ;
Wubs, FW ;
deZeeuw, PM .
APPLIED NUMERICAL MATHEMATICS, 1997, 24 (04) :439-455
[8]   THE CONVERGENCE BEHAVIOR OF ITERATIVE METHODS ON SEVERELY STRETCHED GRIDS [J].
BOTTA, EFF ;
WUBS, FW .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (19) :3333-3350
[9]  
BOTTA EFF, 1995, P 9 INT C FIN EL FLU, P989
[10]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6