Anomalous diffusion in confined turbulent convection

被引:10
作者
Boffetta, G. [1 ,2 ]
De Lillo, F. [1 ,2 ]
Musacchio, S. [3 ]
机构
[1] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy
[2] Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy
[3] Univ Nice Sophia Antipolis, CNRS, UMR 7351, Lab JA Dieudonne, F-06108 Nice, France
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 06期
关键词
RAYLEIGH-TAYLOR INSTABILITY;
D O I
10.1103/PhysRevE.85.066322
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Turbulent convection in quasi-one-dimensional geometry is studied by means of high-resolution direct numerical simulations within the framework of Rayleigh-Taylor turbulence. Geometrical confinement has dramatic effects on the dynamics of the turbulent flow, inducing a transition from superdiffusive to subdiffusive evolution of the mixing layer and arresting the growth of kinetic energy. A nonlinear diffusion model is shown to reproduce accurately the above phenomenology. The model is used to predict, without free parameters, the spatiotemporal evolution of the heat flux profile and the dependence of the Nusselt number on the Rayleigh number.
引用
收藏
页数:5
相关论文
共 23 条
[1]   UNSTEADY AXIAL MIXING BY NATURAL-CONVECTION IN A VERTICAL COLUMN [J].
BAIRD, MHI ;
ARAVAMUDAN, K ;
RAO, NVR ;
CHADAM, J ;
PIERCE, AP .
AICHE JOURNAL, 1992, 38 (11) :1825-1834
[2]   Statistics of mixing in three-dimensional Rayleigh-Taylor turbulence at low Atwood number and Prandtl number one [J].
Boffetta, G. ;
Mazzino, A. ;
Musacchio, S. ;
Vozella, L. .
PHYSICS OF FLUIDS, 2010, 22 (03) :1-8
[3]   Nonlinear Diffusion Model for Rayleigh-Taylor Mixing [J].
Boffetta, G. ;
De Lillo, F. ;
Musacchio, S. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[4]   Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence [J].
Boffetta, G. ;
Mazzino, A. ;
Musacchio, S. ;
Vozella, L. .
PHYSICAL REVIEW E, 2009, 79 (06)
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]   Comparison of two- and three-dimensional simulations of miscible Rayleigh-Taylor instability [J].
Cabot, W .
PHYSICS OF FLUIDS, 2006, 18 (04)
[7]   Reynolds number effects on Rayleigh-Taylor instability with possible implications for type-Ia supernovae [J].
Cabot, William H. ;
Cook, Andrew W. .
NATURE PHYSICS, 2006, 2 (08) :562-568
[8]   Phenomenology of Rayleigh-Taylor turbulence [J].
Chertkov, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (11)
[9]   Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability [J].
Dalziel, SB ;
Linden, PF ;
Youngs, DL .
JOURNAL OF FLUID MECHANICS, 1999, 399 :1-48
[10]   Mixing efficiency in high-aspect-ratio Rayleigh-Taylor experiments [J].
Dalziel, Stuart B. ;
Patterson, Michael D. ;
Caulfield, C. P. ;
Coomaraswamy, Imran A. .
PHYSICS OF FLUIDS, 2008, 20 (06)