Surface fractals probed by adsorbate spin-lattice relaxation dispersion

被引:16
作者
Zavada, T [1 ]
Kimmich, R [1 ]
机构
[1] Univ Ulm, Sekt Kernresonanzspektroskopie, D-89069 Ulm, Germany
关键词
D O I
10.1103/PhysRevE.59.5848
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Spin-lattice relaxation of strong adsorbates confined in disordered structures such as porous silica glass is treated on the basis of a relaxation mechanism due to "reorientation mediated by translational displacements." In such a situation the low-frequency spin-lattice relaxation dispersion beyond the regime where local reorientations dominate reflects molecular dynamics as well as the surface geometry on a length scale longer than 1 nm. It is shown that the power law frequently observed for the spin-lattice relaxation dispersion in porous media can be traced back to surface fractality. The fractal properties of rough surfaces and the statistics governing surface displacements enter explicitly in the expression for the dipolar correlation function. The surface fractal dimension can thus be evaluated from the low-frequency spin-lattice relaxation dispersion accessible by field-cycling NMR relaxometry. [S1063-651X(99)12905-2].
引用
收藏
页码:5848 / 5854
页数:7
相关论文
共 32 条
[1]  
Abragam A., 2002, PRINCIPLES NUCL MAGN
[2]  
[Anonymous], 1997, NMR TOMOGRAPHY DIFFU
[3]   MOLECULAR FRACTAL SURFACES [J].
AVNIR, D ;
FARIN, D ;
PFEIFER, P .
NATURE, 1984, 308 (5956) :261-263
[4]   SMALL-ANGLE X-RAY-SCATTERING INVESTIGATION OF SUBMICROSCOPIC POROSITY WITH FRACTAL PROPERTIES [J].
BALE, HD ;
SCHMIDT, PW .
PHYSICAL REVIEW LETTERS, 1984, 53 (06) :596-599
[5]   NMR DETERMINATION OF THE FRACTAL GEOMETRY OF GELS AROUND THE COLLAPSE TRANSITION [J].
BLINC, R ;
JARH, O ;
ZIDANSEK, A ;
BLINC, A .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1989, 44 (02) :163-164
[6]   NMR-STUDY OF THE TIME EVOLUTION OF THE FRACTAL GEOMETRY OF CEMENT GELS [J].
BLINC, R ;
LAHAJNAR, G ;
ZUMER, S ;
PINTAR, MM .
PHYSICAL REVIEW B, 1988, 38 (04) :2873-2875
[7]  
Bunde A., 1994, FRACTALS SCI
[8]  
BYCHUK OV, 1994, J PHYS II, V4, P1135, DOI 10.1051/jp2:1994192
[9]  
DEGENNES PG, 1982, CR ACAD SCI II, V295, P1061
[10]  
Feder J., 1988, FRACTALS