Acetylene Ion Enhanced Bonding of PbS Nanoparticles to Quaterthiophene in Thin Films

被引:3
作者
Pleticha, F. Douglas [1 ]
Lee, Donghwa [2 ]
Sinnott, Susan B. [2 ]
Bolotin, Igor L. [1 ]
Majeski, Michael W. [1 ]
Hanley, Luke [1 ]
机构
[1] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
SURFACE POLYMERIZATION; SOLAR-CELLS; NANOCRYSTALS; POLYTHIOPHENE; CHEMISTRY; GROWTH;
D O I
10.1021/jp306668k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead sulfide (PbS) nanoparticles of similar to 3-5 nm average diameter were codeposited into quaterthiophene (4T) organic films, which in some cases, were additionally modified by simultaneous 50 eV acetylene ion bombardment. The film composition and PbS-4T bonding were monitored by X-ray photoelectron spectroscopy (XPS) and laser desorption postionization mass spectrometry (LDPI-MS). S2p core-level XP spectra indicated that ion-modified films displayed enhanced bonding between 4T and PbS nanoparticles. LDPI mass spectra found thiophene fragments bound to PbS in ion-modified films. Computational simulations were used to investigate the mechanisms by which the incident particles chemically modified the thiophene-PbS nanoparticle interactions: molecular dynamics, density functional theory simulations were carried out on a-terthiophene (3T) analogues of 4T films interacting with (PbS)16 clusters. The simulations showed that, in the absence of acetylene ion modification, a weak charge transfer from the PbS cluster to the nearest 3T molecule occurred, suggestive of little interaction between intact organic matrix molecules and PbS nanoparticles. However, the simulations predicted the formation of a covalent bond between PbS and the oligothiophene film as a result of acetylene ion modification, in support of the experimental observations. These results help explain the recent observation of enhanced photoconductivity in these films upon ion modification (Majeslci, M. W.; et al. J. Vac. Sci. Technol. A 2012, 30, 04D109).
引用
收藏
页码:21693 / 21698
页数:6
相关论文
共 30 条
[1]   Laser desorption postionization for imaging MS of biological material [J].
Akhmetov, Artem ;
Moore, Jerry F. ;
Gasper, Gerald L. ;
Koin, Peter J. ;
Hanley, Luke .
JOURNAL OF MASS SPECTROMETRY, 2010, 45 (02) :137-145
[2]   The SIESTA method;: developments and applicability [J].
Artacho, Emilio ;
Anglada, E. ;
Dieguez, O. ;
Gale, J. D. ;
Garcia, A. ;
Junquera, J. ;
Martin, R. M. ;
Ordejon, P. ;
Pruneda, J. M. ;
Sanchez-Portal, D. ;
Soler, J. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (06)
[3]   Lead sulfide nanocrystal-polymer composites for optoelectronic applications [J].
Asunskis, Daniel J. ;
Bolotin, Igor L. ;
Wroble, Amanda T. ;
Zachary, Adam M. ;
Hanley, Luke .
MACROMOLECULAR SYMPOSIA, 2008, 268 :33-37
[4]   Effects of surface chemistry and shape on nonlinear absorption, scattering, and refraction of PbSe nanocrystals [J].
Bolotin, Igor L. ;
Asunskis, Daniel J. ;
Jawaid, Ali M. ;
Liu, Yaoming ;
Snee, Preston T. ;
Hanley, Luke .
ORGANIC PHOTONIC MATERIALS AND DEVICES XIII, 2011, 7935
[5]   Effects of Surface Chemistry on Nonlinear Absorption, Scattering, and Refraction of PbSe and PbS Nanocrystals [J].
Bolotin, Igor L. ;
Asunskis, Daniel J. ;
Jawaid, Ali M. ;
Liu, Yaoming ;
Snee, Preston T. ;
Hanley, Luke .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16257-16262
[6]   Hybrid solar cell based on blending of organic and inorganic materials-An overview [J].
Chandrasekaran, J. ;
Nithyaprakash, D. ;
Ajjan, K. B. ;
Maruthamuthu, S. ;
Manoharan, D. ;
Kumar, S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (02) :1228-1238
[7]   Optical and chemical properties of polythiophene films produced via surface polymerization by ion-assisted deposition [J].
Choi, YS ;
Tepavcevic, S ;
Xu, Z ;
Hanley, L .
CHEMISTRY OF MATERIALS, 2004, 16 (10) :1924-1931
[9]  
Fichou D., 1999, HDB OLIGO POLYTHIOPH, P185
[10]   Solar cell efficiency tables (version 40) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (05) :606-614