Highly Electrocatalytic Cu2ZnSn(S1-xSex)4 Counter Electrodes for Quantum-Dot-Sensitized Solar Cells

被引:86
作者
Cao, Yuebin [1 ]
Xiao, Yanjun [1 ]
Jung, Jin-Young [1 ]
Um, Han-Don [1 ]
Jee, Sang-Won [1 ]
Choi, Hye Mi [2 ]
Bang, Jin Ho [2 ]
Lee, Jung-Ho [1 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Ansan 426791, Kyeonggi Do, South Korea
[2] Hanyang Univ, Dept Chem & Appl Chem, Ansan 426791, Kyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
quantum-dot-sensitized solar cells; copper zinc tin sulfur (selenium); counter electrodes; electrocatalytic activity; NANOCRYSTALS; CARBON; PBS;
D O I
10.1021/am302522c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Traditional Pt counter electrode in quantum-dot-sensitized solar cells suffers from a low electrocatalytic activity and instability due to irreversible surface adsorption of sulfur species incurred while regenerating polysulfide (S-n(2-)/S2-) electrolytes. To overcome such constraints, chemically synthesized Cu2ZnSn(S1-xSex)(4) nanocrystals were evaluated as an alternative to Pt. The resulting chalcogenides exhibited remarkable electrocatalytic activities for reduction of polysulfide (S-n(2-)) to sulfide (S2-), which were dictated by the ratios of S/Se. In this study, a quantum dot sensitized solar cell constructed with Cu2ZnSn(S0.5Se0.5)(4) as a counter electrode showed the highest energy conversion efficiency of 3.01%, which was even higher than that using Pt (1.24%). The compositional variations in between Cu2ZnSnS4 (x = 0) and Cu2ZnSnSe4 (x = 1) revealed that the solar cell performances were closely related to a difference in electrocatalytic activities for polysulfide reduction governed by the S/Se ratios.
引用
收藏
页码:479 / 484
页数:6
相关论文
共 35 条
[1]   CdSe Quantum Dot-Fullerene Hybrid Nanocomposite for Solar Energy Conversion: Electron Transfer and Photoelectrochemistry [J].
Bang, Jin Ho ;
Kamat, Prashant V. .
ACS NANO, 2011, 5 (12) :9421-9427
[2]   Understanding the Role of the Sulfide Redox Couple (S2-/Sn2-) in Quantum Dot-Sensitized Solar Cells [J].
Chakrapani, Vidhya ;
Baker, David ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (24) :9607-9615
[3]   Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights [J].
Chen, Shiyou ;
Gong, X. G. ;
Walsh, Aron ;
Wei, Su-Huai .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[4]   High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells [J].
Diguna, Lina J. ;
Shen, Qing ;
Kobayashi, Junya ;
Toyoda, Taro .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[5]   Nitrogen-doped hollow carbon nanoparticles as efficient counter electrodes in quantum dot sensitized solar cells [J].
Dong, Jianhui ;
Jia, Suping ;
Chen, Jiazang ;
Li, Bo ;
Zheng, Jianfeng ;
Zhao, Jianghong ;
Wang, Zhijian ;
Zhu, Zhenping .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) :9745-9750
[6]   Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in Dye-Sensitized and Quantum-Dot Solar Cells [J].
Fan, Sheng-Qiang ;
Fang, Baizeng ;
Kim, Jung Ho ;
Jeong, Banseok ;
Kim, Chulwoo ;
Yu, Jong-Sung ;
Ko, Jaejung .
LANGMUIR, 2010, 26 (16) :13644-13649
[7]   Improving the performance of colloidal quantum-dot-sensitized solar cells [J].
Gimenez, Sixto ;
Mora-Sero, Ivan ;
Macor, Lorena ;
Guijarro, Nestor ;
Lana-Villarreal, Teresa ;
Gomez, Roberto ;
Diguna, Lina J. ;
Shen, Qing ;
Toyoda, Taro ;
Bisquert, Juan .
NANOTECHNOLOGY, 2009, 20 (29)
[8]   Modeling High-Efficiency Quantum Dot Sensitized Solar Cells [J].
Gonzalez-Pedro, Victoria ;
Xu, Xueqing ;
Mora-Sero, Ivan ;
Bisquert, Juan .
ACS NANO, 2010, 4 (10) :5783-5790
[9]   Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals [J].
Guo, Qijie ;
Ford, Grayson M. ;
Yang, Wei-Chang ;
Walker, Bryce C. ;
Stach, Eric A. ;
Hillhouse, Hugh W. ;
Agrawal, Rakesh .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (49) :17384-17386
[10]   Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells [J].
Guo, Qijie ;
Hillhouse, Hugh W. ;
Agrawal, Rakesh .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11672-+