Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking

被引:265
作者
Bowden, MG
Balasubramanian, CK
Neptune, RR
Kautz, SA
机构
[1] Malcom Randall VA Med Ctr, Brain Rehabil Res Ctr, Gainesville, FL 32608 USA
[2] Univ Florida, Rehabil Sci Doctoral Program, Gainesville, FL USA
[3] Univ Florida, Dept Phys Therapy, Gainesville, FL USA
[4] Univ Florida, Brooks Ctr Rehabil Studies, Gainesville, FL USA
[5] Univ Texas, Dept Mech Engn, Austin, TX 78712 USA
关键词
hemiplegia; locomotion; motor activity;
D O I
10.1161/01.STR.0000204063.75779.8d
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose - Walking after stroke is characterized by slow gait speed, poor endurance, reduced quality and adaptability of walking patterns, and an inability to coordinate the legs. Estimates based on mechanical work calculations have suggested that the paretic leg does 30% to 40% of the total mechanical work over the gait cycle, regardless of hemiparetic severity, but these work estimates may not describe the contribution of each leg to forward propulsion. The purpose of this study was to establish a quantifiable link between hemiparetic severity and paretic leg contribution to propulsion during walking, which we propose to quantify using a measure based on the anterior-posterior ground reaction forces (A-P GRFs). Methods - A total of 47 participants with chronic hemiparesis walked at self-selected speeds to collect spatiotemporal parameters and 3D GRFs. A 16-person subset also participated in a pedaling protocol to compare A-P GRF measures to established measures of paretic leg output. Results - A-P GRF measures were correlated with both walking speed and hemiparetic severity. These measures were also strongly correlated with positive work and net work values obtained during the pedaling task. The percentage of total propulsion generated by the paretic leg (PP) was calculated and found to be 16%, 36%, and 49% for those with high, moderate, and low hemiparetic severity, respectively. Conclusion - PP was found to provide a quantitative measure of the coordinated output of the paretic leg. Further research on this measure of forward propulsion may lead to the provision of an effective tool for distinguishing functional compensation from physiological restitution.
引用
收藏
页码:872 / 876
页数:5
相关论文
共 17 条
[2]   Speed-dependent reductions of force output in people with poststroke hemiparesis [J].
Brown, DA ;
Kautz, SA .
PHYSICAL THERAPY, 1999, 79 (10) :919-930
[3]  
BRUNNSTROM S., 1970, MOVEMENT THERAPY HEM
[4]   Temporal stride and force analysis of cane-assisted gait in people with hemiplegic stroke [J].
Chen, CL ;
Chen, HC ;
Wong, MK ;
Tang, FT ;
Chen, RS .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2001, 82 (01) :43-48
[5]  
DeQuervain IAK, 1996, J BONE JOINT SURG AM, V78A, P1506
[6]  
FUGLMEYER AR, 1975, SCAND J REHABIL MED, V7, P13
[7]   Relationships between timing of muscle excitation and impaired motor performance during cyclical lower extremity movement in post-stroke hemiplegia [J].
Kautz, SA ;
Brown, DA .
BRAIN, 1998, 121 :515-526
[8]   Interlimb influences on paretic leg function in poststroke hemiparesis [J].
Kautz, SA ;
Patten, C .
JOURNAL OF NEUROPHYSIOLOGY, 2005, 93 (05) :2460-2473
[9]  
KAUTZ SA, 2003, ANN M SOC NEUR NEW O
[10]  
KNUTSSON E, 1981, SCAND J REHABIL MED, V13, P101