Robust stability analysis of discrete-time systems using genetic algorithms

被引:17
作者
Fadali, MS [1 ]
Zhang, YM
Louis, SJ
机构
[1] Univ Nevada, Dept Elect Engn, Reno, NV 89557 USA
[2] Univ Nevada, Dept Comp Sci, Reno, NV 89557 USA
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS | 1999年 / 29卷 / 05期
基金
美国国家科学基金会;
关键词
genetic algorithms; robust stability analysis;
D O I
10.1109/3468.784176
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We reduce stability robustness analysis for linear, time-invariant, discrete time systems to a search problem and attack the problem using genetic algorithms. We describe the problem framework and the modifications that needed to be made to the canonical genetic algorithm for successful application to robustness analysis. Our results show that genetic algorithms can successfully test a sufficient condition for instability in uncertain linear systems with nonlinear polynomial structures. Three illustrative examples demonstrate the new approach.
引用
收藏
页码:503 / 508
页数:6
相关论文
共 27 条
[1]  
Ackermann J., 1993, Robust Control: Systems with Uncertain Physical Parameters
[2]   ROBUST SCHUR STABILITY OF A POLYTOPE OF POLYNOMIALS [J].
ACKERMANN, JE ;
BARMISH, BR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (10) :984-986
[3]  
Barmish R. B., 1994, NEW TOOLS ROBUSTNESS
[4]  
Bartlett A. C., 1987, Proceedings of the 1987 American Control Conference, P1611
[5]  
DAVIS L, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P61
[6]   ROBUST CONTROL OF A SERVOMECHANISM PROBLEM FOR LINEAR TIME-INVARIANT MULTIVARIABLE SYSTEMS [J].
DAVISON, EJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (01) :25-34
[7]  
DEJONG KA, 1980, P 1 INT C GEN ALG, P169
[8]  
Goldberg D., 1989, GENETIC ALGORITHMS S
[9]  
HOLLAND J, 1975, APAPTATION NATURAL A
[10]   STABILITY AND APERIODICITY CONSTRAINTS FOR SYSTEM DESIGN [J].
JURY, EI ;
PAVLIDIS, T .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1963, CT10 (01) :137-&