Regulation of RpoS proteolysis in Escherichia coli:: The response regulator RssB is a recognition factor that interacts with the turnover element in RpoS

被引:160
作者
Becker, G [1 ]
Klauck, E [1 ]
Hengge-Aronis, R [1 ]
机构
[1] Free Univ Berlin, Inst Plant Physiol & Microbiol, D-14195 Berlin, Germany
关键词
sigma-S; sigma factor; Clp protease; two-component system; stress;
D O I
10.1073/pnas.96.11.6439
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The degradation of the RpoS (sigma(S)) subunit of RNA polymerase in Escherichia coli is a prime example of regulated proteolysis in prokaryotes. RpoS turnover depends on ClpXP protease, the response regulator RssB, and a hitherto uncharacterized "turnover element" within RpoS itself. Here we localize the turnover element to a small element (around the crucial amino acid lysine-173) directly downstream of the promoter-recognizing region 2.4 in RpoS. Its sequence as well as its location identify the turnover element as a unique proteolysis-promoting motif. This element is shown to be a site of interaction with RssB. Thus, RssB is functionally unique among response regulators as a direct recognition factor in ClpXP-dependent RpoS proteolysis. Binding of RssB to RpoS is stimulated by phosphorylation of the RssB receiver domain, suggesting that environmental stress affects RpoS proteolysis by modulating RssB affinity for RpoS. Initial evidence indicates that lysine-173 in RpoS, besides being essential of RpoS proteolysis, may play a role in promoter recognition. Thus the same region in RpoS is crucial for proteolysis as well as for activity as a transcription factor.
引用
收藏
页码:6439 / 6444
页数:6
相关论文
共 44 条
[1]   Region 2.5 of the Escherichia coli RNA polymerase sigma(70) subunit is responsible for the recognition of the 'extended -10' motif at promoters [J].
Barne, KA ;
Bown, JA ;
Busby, SJW ;
Minchin, SD .
EMBO JOURNAL, 1997, 16 (13) :4034-4040
[2]   Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium [J].
Bearson, SMD ;
Benjamin, WH ;
Swords, WE ;
Foster, JW .
JOURNAL OF BACTERIOLOGY, 1996, 178 (09) :2572-2579
[3]   Regulation of RssB-dependent proteolysis in Escherichia coli:: a role for acetyl phosphate in a response regulator-controlled process [J].
Bouché, S ;
Klauck, E ;
Fischer, D ;
Lucassen, M ;
Jung, K ;
Hengge-Aronis, R .
MOLECULAR MICROBIOLOGY, 1998, 27 (04) :787-795
[4]   Organization of open complexes at Escherichia coli promoters -: Location of promoter DNA sites close to region 2.5 of the σ70 subunit of RNA polymerase [J].
Bown, JA ;
Owens, JT ;
Meares, CF ;
Fujita, N ;
Ishihama, A ;
Busby, SJW ;
Minchin, SD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :2263-2270
[5]   Mutations that increase expression of the rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium [J].
Brown, L ;
Elliott, T .
JOURNAL OF BACTERIOLOGY, 1997, 179 (03) :656-662
[6]   REGULATION OF THE ESCHERICHIA-COLI HEAT-SHOCK RESPONSE [J].
BUKAU, B .
MOLECULAR MICROBIOLOGY, 1993, 9 (04) :671-680
[7]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555
[8]   IS HSP70 THE CELLULAR THERMOMETER [J].
CRAIG, EA ;
GROSS, CA .
TRENDS IN BIOCHEMICAL SCIENCES, 1991, 16 (04) :135-140
[9]  
Dombroski AJ, 1997, J BIOL CHEM, V272, P3487
[10]   BIOCHEMICAL AND GENETIC-CHARACTERIZATION OF OSMOREGULATORY TREHALOSE SYNTHESIS IN ESCHERICHIA-COLI [J].
GIAEVER, HM ;
STYRVOLD, OB ;
KAASEN, I ;
STROM, AR .
JOURNAL OF BACTERIOLOGY, 1988, 170 (06) :2841-2849