The viability kernel algorithm for computing value functions of infinite horizon optimal control problems

被引:27
作者
Aubin, JP
Frankowska, H
机构
[1] CEREMADE, Université Paris-Dauphine
关键词
D O I
10.1006/jmaa.1996.0273
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize in this paper the epigraph of the value function of a discounted infinite horizon optimal control problem as the viability kernel of an auxiliary differential inclusion. Then the viability kernel algorithm applied to this problem provides the value function of the discretized optimal control problem as the supremum of a nondecreasing sequence of functions iteratively defined. We also use the fact that an upper Painleve-Kuratowski limit of closed viability domains is a viability domain to prove the convergence of the discrete value functions. (C) 1996 Academic Press, Inc.
引用
收藏
页码:555 / 576
页数:22
相关论文
共 30 条
[1]  
Aubin J.-P., 1991, Viability Theory
[2]  
Aubin J.-P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[3]  
AUBIN JP, 1990, CR ACAD SCI I-MATH, V311, P851
[4]  
AUBIN JP, 1994, CR ACAD SCI I-MATH, V319, P631
[5]  
AUBIN JP, 1992, CR ACAD SCI I-MATH, V314, P957
[6]  
AUBIN JP, 1981, ADV MATH S, P160
[7]  
AUBIN JP, 1987, LECTURE NOTES PURE A
[8]  
AUBIN JP, 1996, J CONVEX ANAL
[9]  
Bertsekas D. P, 1976, DYNAMIC PROGRAMMING
[10]  
Bertsekas Dimitri P., 1989, PARALLEL DISTRIBUTED