Using electroluminescence (EL) as a monitor, we have investigated the behavior of charge carriers injected from electrodes and excitons generated by the recombination of charge carriers in multilayer organic light-emitting diodes (LEDs) using poly(methylphenylsilane) (PMPS) as a hole transporting material. Our multilayer LEDs have two or three functional organic layers including Coumarin 6 [3-(2'-benzothiazolyl)-7-diethylaminocoumarin, abbreviated as C6] and/or tris-(8-hydroxyquinoline) aluminum layers as well as a PMPS layer. When the LEDs were fabricated, two parameters of the C6 layer were changed, the layer thickness (30-120 nm) and the dye concentration (1-100 wt %). We employed a combined analysis of the dependence of the EL spectra on the thickness and dye concentration of the C6 layer, the dye-selective fluorescence spectra and the current-voltage-EL characteristics, to reveal the thickness of the electron-hole capture zone and the behavior of charge carriers and excitons during operation in these LEDs. (C) 1996 American Institute of Physics.